An L-band geophysical model function for SAR wind retrieval using JERS-1 SAR

被引:46
|
作者
Shimada, T [1 ]
Kawamura, H
Shimada, M
机构
[1] Toho Univ, Fac Sci, Ctr Atmospher & Ocean Studies, Sendai, Miyagi 9808578, Japan
[2] Natl Space Dev Agcy Japan, Earth Observat Res Ctr, Tokyo 1046023, Japan
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2003年 / 41卷 / 03期
关键词
Japanese Earth Resources Satellite-1 synthetic; aperture radar (JERS-1 SAR); L-band model function; synthetic aperture radar (SAR) wind retrieval; SYNTHETIC-APERTURE RADAR; CROSS-SECTIONS; OCEAN WAVE; SPEED; GHZ; SCATTEROMETER; CALIBRATION; DEPENDENCE; IMAGERY; SURFACE;
D O I
10.1109/TGRS.2003.808836
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
An L-band geophysical model function is developed using Japanese Earth Resources Satellite-1 (JERS-1) synthetic aperture radar (SAR) data. First, we estimate the SAR system noise, which has been a serious problem peculiar to the JERS-1 SAR. It is found that the. system noise has a feature common in all the SAR images and that the azimuth-averaged profile of noise can be expressed as a parabolic function of range. By subtracting the estimated noise from the SAR images, we can extract the relatively calibrated ocean signals. Second, using the noise-removed SAR data and wind vector data from the NASA, Scatterometer and buoys operated by the Japan Meteorological Agency, we generate a match-up dataset, which consists of, the SAR sigma-0, the incidence angle, the surface wind speed, and wind direction. Third, we investigate the sigma-0 dependence on incidence angle, wind speed, and wind direction. While the incidence angle dependence is negligible in the present results, we can derive distinct sigma-0 dependence on wind speed and direction. For wind speeds below 8 m/s, the wind direction dependence is not significant. However, for higher wind speeds, the upwind-downwind asymmetry becomes very large. Finally, taking into account these characteristics, a new L-band-HH geophysical model function is produced for the SAR wind retrieval using a third-order harmonics formula. Resultant estimates of SAR-derived wind speed have an rms error of 2.09 m/s with a negligible bias against the truth wind speed. This result enables us to convert JERS-1 SAR images into the reliable wind-speed maps.
引用
收藏
页码:518 / 531
页数:14
相关论文
共 50 条
  • [21] DEVELOPMENT AND EXPERIMENT OF L-BAND SAR FOR RANGING AND IMAGING TARGET
    Kim, Kyeong-Rok
    Ryu, Sang Burm
    Lee, Hyeon-Cheol
    Lee, Sang-Gyu
    Kim, Jae-Hyun
    IGARSS 2018 - 2018 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2018, : 7821 - 7824
  • [22] Soil moisture limitations on monitoring boreal forest regrowth using spaceborne L-band SAR data
    Kasischke, Eric S.
    Tanase, Mihai A.
    Bourgeau-Chavez, Laura L.
    Borr, Matthew
    REMOTE SENSING OF ENVIRONMENT, 2011, 115 (01) : 227 - 232
  • [23] Retrieval of Tropical Forest Height and Above-Ground Biomass Using Airborne P- and L-Band SAR Tomography
    Liu, Xiao
    Zhang, Lu
    Yang, Xinwei
    Liao, Mingsheng
    Li, Wei
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [24] Soil Moisture Retrieval Using SMAP L-Band Radiometer and RISAT-1 C-Band SAR Data in the Paddy Dominated Tropical Region of India
    Singh, Gurjeet
    Das, Narendra N.
    Panda, Rabindra K.
    Mohanty, Binayak P.
    Entekhabi, Dara
    Bhattacharya, Bimal K.
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10644 - 10664
  • [25] Tracking of Coastal Swell Fields in SAR Images for Sea Depth Retrieval: Application to ALOS L-Band Data
    Boccia, Valentina
    Renga, Alfredo
    Moccia, Antonio
    Zoffoli, Simona
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (07) : 3532 - 3540
  • [26] L-Band SAR Co-Polarized Phase Difference Modeling for Corn Fields
    Barber, Matias Ernesto
    Rava, David Sebastian
    Lopez-Martinez, Carlos
    REMOTE SENSING, 2021, 13 (22)
  • [27] Definition of Tomographic SAR Configurations for Forest Structure Applications at L-Band
    Cazcarra-Bes, Victor
    Pardini, Matteo
    Papathanassiou, Konstantinos
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [28] TIME SERIES ANALYSIS OF L-BAND SAR FOR AGRICULTURAL LANDCOVER CLASSIFICATION
    Whelen, Tracy
    Siqueira, Paul
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 5342 - 5345
  • [29] Dual polarized phased array antenna for airborne L-band SAR
    Skora, JS
    Sanz, AJ
    Fabbra, RDM
    2005 SBMO/IEEE MTT-S International Microwave and Optoelectronics Conference (IMOC), 2005, : 190 - 194
  • [30] Estimating and Removing Ionospheric Effects for L-Band Spaceborne Bistatic SAR
    Lin, Haoyu
    Deng, Yunkai
    Zhang, Heng
    Wang, Jili
    Liang, Da
    Fang, Tingzhu
    Wang, Robert
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60