Cell-to-cell heterogeneity of phosphate gene expression in yeast is controlled by alternative transcription, 14-3-3 and Spl2

被引:1
作者
Crooijmans, Marjolein E. [1 ]
Delzenne, Tijn O. [1 ]
Hensen, Tim [1 ]
Darehei, Mina [1 ]
de Winde, Johannes H. [1 ]
van Heusden, G. Paul H. [1 ]
机构
[1] Leiden Univ, Inst Biol, Leiden, Netherlands
来源
BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS | 2021年 / 1864卷 / 6-7期
关键词
Phosphate metabolism; Saccharomyces cerevisiae; Non-coding transcription; Bimodal gene expression; Transcription start site; SACCHAROMYCES-CEREVISIAE; SHUTTLE VECTORS; PROTEIN-KINASE; RNA; BINDING; PHO84; ROLES; TRANSPORT; PHOSPHORYLATION; 14-3-3-PROTEINS;
D O I
10.1016/j.bbagrm.2021.194714
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Dependent on phosphate availability the yeast Saccharomyces cerevisiae expresses either low or high affinity phosphate transporters. In the presence of phosphate yeast cells still express low levels of the high affinity phosphate transporter Pho84. The regulator Spl2 is expressed in approximately 90% of the cells, and is not expressed in the remaining cells. Here we report that deletion of RRP6, encoding an exonuclease degrading non-coding RNA, or BMH1, encoding the major 14-3-3 isoform, resulted in less cells expressing SPL2 and in increased levels of RNA transcribed from sequences upstream of the SPL2 coding region. SPL2 stimulates its own expression and that of PHO84 ensuing a positive feedback. Upon deletion of the region responsible for upstream SPL2 transcription almost all cells express SPL2. These results indicate that the cell-to-cell variation in PHO84 and SPL2 expression is dependent on a specific part of the SPL2 promoter and is controlled by Bmh1 and Spl2.
引用
收藏
页数:17
相关论文
共 64 条
  • [1] Transcriptional response of Saccharomyces cerevisiae to potassium starvation
    Anemaet, Ida G.
    van Heusden, G. Paul H.
    [J]. BMC GENOMICS, 2014, 15
  • [2] Emerging Properties and Functional Consequences of Noncoding Transcription
    Ard, Ryan
    Allshire, Robin C.
    Marquardt, Sebastian
    [J]. GENETICS, 2017, 207 (02) : 357 - 367
  • [3] Long non-coding RNA-mediated transcriptional interference of a permease gene confers drug tolerance in fission yeast
    Ard, Ryan
    Tong, Pin
    Allshire, Robin C.
    [J]. NATURE COMMUNICATIONS, 2014, 5
  • [4] Phosphate Homeostasis - A Vital Metabolic Equilibrium Maintained Through the INPHORS Signaling Pathway
    Austin, Sisley
    Mayer, Andreas
    [J]. FRONTIERS IN MICROBIOLOGY, 2020, 11
  • [5] Short Residence Times of DNA-Bound Transcription Factors Can Reduce Gene Expression Noise and Increase the Transmission of Information in a Gene Regulation System
    Azpeitia, Eugenio
    Wagner, Andreas
    [J]. FRONTIERS IN MOLECULAR BIOSCIENCES, 2020, 7
  • [6] Linking Stochastic Fluctuations in Chromatin Structure and Gene Expression
    Brown, Christopher R.
    Mao, Changhui
    Falkovskaia, Elena
    Jurica, Melissa S.
    Boeger, Hinrich
    [J]. PLOS BIOLOGY, 2013, 11 (08):
  • [7] Antisense transcription-dependent chromatin signature modulates sense transcript dynamics
    Brown, Thomas
    Howe, Francoise S.
    Murray, Struan C.
    Wouters, Meredith
    Lorenz, Philipp
    Seward, Emily
    Rata, Scott
    Angel, Andrew
    Mellor, Jane
    [J]. MOLECULAR SYSTEMS BIOLOGY, 2018, 14 (02)
  • [8] THE PHO84 GENE OF SACCHAROMYCES-CEREVISIAE ENCODES AN INORGANIC-PHOSPHATE TRANSPORTER
    BUNYA, M
    NISHIMURA, M
    HARASHIMA, S
    OSHIMA, Y
    [J]. MOLECULAR AND CELLULAR BIOLOGY, 1991, 11 (06) : 3229 - 3238
  • [9] Two new genes, PHO86 and PHO87, involved in inorganic phosphate uptake in Saccharomyces cerevisiae
    BunYa, M
    Shikata, K
    Nakade, S
    Yompakdee, C
    Harashima, S
    Oshima, Y
    [J]. CURRENT GENETICS, 1996, 29 (04) : 344 - 351
  • [10] Antisense RNA stabilization induces transcriptional gene silencing via histone deacetylation in s.: cerevisiae
    Camblong, Jurgi
    Iglesias, Nahid
    Fickentscher, Céline
    Dieppois, Guennaelle
    Stutz, Françoise
    [J]. CELL, 2007, 131 (04) : 706 - 717