Kinetic Monte Carlo Simulations Unveil Synergic Effects at Work on Bifunctional Catalysts

被引:42
作者
Prats, Hector [1 ,2 ]
Posada-Perez, Sergio [1 ,2 ]
Rodriguez, Jose A. [3 ]
Sayos, Ramon [1 ,2 ]
Illas, Francesc [1 ,2 ]
机构
[1] Univ Barcelona, Dept Ciencia Mat & Quim Fis, C Marti i Franques 1-11, E-08028 Barcelona, Spain
[2] Univ Barcelona, Inst Quim Teor & Computac IQTCUB, C Marti i Franques 1-11, E-08028 Barcelona, Spain
[3] Brookhaven Natl Lab, Chem Dept, Upton, NY 11973 USA
关键词
kMC; synergic effects; bifunctional catalysts; WGSR; reaction mechanisms; transition-metal carbides; WATER-GAS-SHIFT; DENSITY-FUNCTIONAL THEORY; METAL-SUPPORT INTERACTION; ACTIVE AU/DELTA-MOC; CO OXIDATION; MOLYBDENUM CARBIDE; AU CLUSTERS; KEY FACTOR; MECHANISM; SURFACES;
D O I
10.1021/acscatal.9b02813
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The interaction between metal particles and the support in heterogeneous catalysis has been the subject of a large number of studies. While strong metal support interactions can lead to deleterious catalyst deactivation and the underlying mechanism is well understood, in other cases the effect may beneficially enhance the catalytic activity and/or selectivity with no clear picture of the chemistry involved. Strong metal-support interactions make Au nanoparticles dispersed on MoC a highly active catalyst for the low-temperature water-gas shift reaction (WGSR). Here, by using kinetic Monte Carlo (kMC) simulations, we unravel the origin of the experimentally observed high WGSR activity of Au/MoC. The kMC simulations provide strong evidence for a cooperative effect between the different regions of the catalyst: the clean MoC regions are responsible for adsorbing and dissociating water molecules, and the vicinity of the Au adclusters contributes to COOH formation. The information thus obtained goes beyond that obtained solely from free-energy landscapes and constitutes a step forward toward the rational design of catalysts. Importantly, the simulations and analysis described here are general and can be applied to other complex systems involving different catalytic regions and a large number of surface processes.
引用
收藏
页码:9117 / 9126
页数:19
相关论文
共 56 条
[1]   Assessment of mean-field microkinetic models for CO methanation on stepped metal surfaces using accelerated kinetic Monte Carlo [J].
Andersen, Mie ;
Plaisance, Craig P. ;
Reuter, Karsten .
JOURNAL OF CHEMICAL PHYSICS, 2017, 147 (15)
[2]  
Boudart M., 1969, ADV CATAL, V20, P153, DOI DOI 10.1016/S0360-0564(08)60271-0
[3]   A New Type of Strong Metal-Support Interaction and the Production of H2 through the Transformation of Water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) Catalysts [J].
Bruix, Albert ;
Rodriguez, Jose A. ;
Ramirez, Pedro J. ;
Senanayake, Sanjaya D. ;
Evans, Jaime ;
Park, Joon B. ;
Stacchiola, Dario ;
Liu, Ping ;
Hrbek, Jan ;
Illas, Francesc .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (21) :8968-8974
[4]   An improved microkinetic model for the water gas shift reaction on copper [J].
Callaghan, C ;
Fishtik, I ;
Datta, R ;
Carpenter, M ;
Chmielewski, M ;
Lugo, A .
SURFACE SCIENCE, 2003, 541 (1-3) :21-30
[5]  
Campbell CT, 2012, NAT CHEM, V4, P597, DOI 10.1038/nchem.1412
[6]   Trends in the catalytic CO oxidation activity of nanoparticles [J].
Falsig, Hanne ;
Hvolbaek, Britt ;
Kristensen, Iben S. ;
Jiang, Tao ;
Bligaard, Thomas ;
Christensen, Claus H. ;
Norskov, Jens K. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (26) :4835-4839
[7]   Experiment-Based Kinetic Monte Carlo Simulations: CO Oxidation over RuO2(110) [J].
Farkas, A. ;
Hess, F. ;
Over, H. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (01) :581-591
[8]   On the mechanism of low-temperature water gas shift reaction on copper [J].
Gokhale, Amit A. ;
Dumesic, James A. ;
Mavrikakis, Manos .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (04) :1402-1414
[9]   Mechanism of the water gas shift reaction on Pt: First principles, experiments, and microkinetic modeling [J].
Grabow, Lars C. ;
Gokhale, Amit A. ;
Evans, Steven T. ;
Dumesic, James A. ;
Mavrikakis, Manos .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (12) :4608-4617
[10]   Alloy catalysts designed from first principles [J].
Greeley, J ;
Mavrikakis, M .
NATURE MATERIALS, 2004, 3 (11) :810-815