A unified view of some vertex operator constructions

被引:32
作者
Berman, S [1 ]
Gao, Y
Tan, SB
机构
[1] Univ Saskatchewan, Dept Math & Stat, Saskatoon, SK S7N 5E6, Canada
[2] York Univ, Dept Math & Stat, Toronto, ON M3J 1P3, Canada
[3] Xiamen Univ, Dept Math, Xiamen 361005, Peoples R China
关键词
D O I
10.1007/BF02787402
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a general vertex operator construction based on the Fock space for affine Lie algebras of type A. This construction allows us to give a unified treatment for both the homogeneous and principle realizations of the affine Lie algebras (g) over capl(N) as well as for some extended affine Lie algebras coordinatized by certain quantum tori.
引用
收藏
页码:29 / 60
页数:32
相关论文
共 32 条
[1]  
Allison B., 1997, Memoirs Amer. Math. Soc., V126
[2]   A characterization of affine Kac-Moody lie algebras [J].
Allison, BN ;
Berman, S ;
Gao, Y ;
Pianzola, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1997, 185 (03) :671-688
[3]   ENVELOPING-ALGEBRAS AND REPRESENTATIONS OF TOROIDAL LIE-ALGEBRAS [J].
BERMAN, S ;
COX, B .
PACIFIC JOURNAL OF MATHEMATICS, 1994, 165 (02) :239-267
[4]   Quantum tori and the structure of elliptic quasi-simple Lie algebras [J].
Berman, S ;
Gao, Y ;
Krylyuk, YS .
JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 135 (02) :339-389
[5]  
Berman S., 1999, CONT MATH, V248, P39
[6]  
Frenkel I., 1989, Vertex operator algebras and the Monster
[7]  
Frenkel I.B., 1985, LECT APPL MATH, V21, P325
[10]   Vertex representations via finite groups and the McKay correspondence [J].
Frenkel, IB ;
Jing, NH ;
Wang, WQ .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2000, 2000 (04) :195-222