Application of halloysite nanotubes for carbon dioxide capture

被引:23
作者
Kim, Jinsoo [1 ]
Rubino, Ilaria [2 ]
Lee, Joo-Youp [1 ]
Choi, Hyo-Jick [2 ]
机构
[1] Univ Cincinnati, Dept Biomed Chem & Environm Engn, Chem Engn Program, Cincinnati, OH 45221 USA
[2] Univ Alberta, Dept Chem & Mat Engn, Edmonton, AB T6G 1H9, Canada
关键词
halloysite nanotubes; carbon dioxide; amine; grafting; impregnation; CO2; CAPTURE; CLIMATE-CHANGE; ADSORPTION; ADSORBENT; AMINE; EMISSION; KINETICS; REMOVAL; RELEASE;
D O I
10.1088/2053-1591/3/4/045019
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Halloysite is a naturally occurring clay, with physical structure represented by halloysite nanotubes (HNTs). We investigated the potential applicability of HNTs for carbon dioxide (CO2) capture, using two amine-functionalized HNTs: (3-aminopropyl) triethoxysilane (APTES)-grafted HNTs and polyethylenimine (PEI)-impregnated HNTs. APTES-HNTs and PEI-HNTs resulted in 5.6 and 30 wt.% (in sorbent) in functionalization onto HNTs, respectively. Capture efficiency was higher in APTES-HNTs at lower temperatures, while it was maximum in PEI-HNTs at 70 degrees C-75 degrees C. At 75 degrees C, adsorption/desorption tests showed that 95% of the two reactions occurred within 30 min, and exhibited 0.15 and 0.21 millimole of CO2 adsorption capacity per millimole of amine group for APTES-HNTs and PEI-HNTs, respectively. During 10 cycles of CO2 adsorption/desorption, there was no significant decrease in sorbent weight and adsorption capacity in both HNTs. These results show that inherent structural features of HNTs can be easily tailored for the development of operational condition-specific CO2 capture system.
引用
收藏
页数:12
相关论文
共 61 条
[1]   Recent progress in CO2 capture/sequestration:: A review [J].
Abu-Khader, Mazen M. .
ENERGY SOURCES PART A-RECOVERY UTILIZATION AND ENVIRONMENTAL EFFECTS, 2006, 28 (14) :1261-1279
[2]  
[Anonymous], 2011, J SCI TECHNOL
[3]  
[Anonymous], 2006, EIA ANN ENERGY OUTLO
[4]  
[Anonymous], 2006, EIA INT ENERGY OUTLO
[5]  
[Anonymous], 2006, EIA EMISSIONS GREENH
[6]   Integration of CO2 capture unit using single- and blended-amines into supercritical coal-fired power plants:: Implications for emission and energy management [J].
Aroonwilas, Adisorn ;
Veawab, Amornuadee .
INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2007, 1 (02) :143-150
[7]   Surface modification of natural halloysite clay nanotubes with aminosilanes. Application as catalyst supports in the atom transfer radical polymerization of methyl methacrylate [J].
Barrientos-Ramirez, S. ;
Montes de Oca-Ramirez, G. ;
Ramos-Fernandez, E. V. ;
Sepulveda-Escribano, A. ;
Pastor-Blas, M. M. ;
Gonzalez-Montiel, A. .
APPLIED CATALYSIS A-GENERAL, 2011, 406 (1-2) :22-33
[8]   CO2 capture by a task-specific ionic liquid [J].
Bates, ED ;
Mayton, RD ;
Ntai, I ;
Davis, JH .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2002, 124 (06) :926-927
[9]   Ionic Liquids for CO2 Capture and Emission Reduction [J].
Brennecke, Joan E. ;
Gurkan, Burcu E. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (24) :3459-3464
[10]   Mesoporous Alumina-Supported Amines as Potential Steam-Stable Adsorbents for Capturing CO2 from Simulated Flue Gas and Ambient Air [J].
Chaikittisilp, Watcharop ;
Kim, Hyung-Ju ;
Jones, Christopher W. .
ENERGY & FUELS, 2011, 25 (11) :5528-5537