Power spectrum and critical exponents in the 2D stochastic Wilson-Cowan model

被引:10
作者
Apicella, I. [1 ,2 ]
Scarpetta, S. [2 ,3 ]
de Arcangelis, L. [4 ]
Sarracino, A. [5 ]
de Candia, A. [1 ,2 ,3 ,4 ,5 ]
机构
[1] Univ Naples Federico II, Dept Phys E Pancini, Naples, Italy
[2] INFN, Sect Naples, Gruppo Collegato Salerno, Fisciano, Italy
[3] Univ Salerno, Dept Phys E Caianiello, Fisciano, Italy
[4] Univ Campania Luigi Vanvitelli, Dept Math & Phys, Caserta, Italy
[5] Univ Campania Luigi Vanvitelli, Dept Engn, Aversa, Italy
关键词
NEURONAL AVALANCHES; SPECIFICITY; BRAIN;
D O I
10.1038/s41598-022-26392-8
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The power spectrum of brain activity is composed by peaks at characteristic frequencies superimposed to a background that decays as a power law of the frequency, f(-beta), with an exponent beta close to 1 (pink noise). This exponent is predicted to be connected with the exponent gamma related to the scaling of the average size with the duration of avalanches of activity. "Mean field" models of neural dynamics predict exponents beta and gamma equal or near 2 at criticality (brown noise), including the simple branching model and the fully-connected stochastic Wilson-Cowan model. We here show that a 2D version of the stochastic Wilson-Cowan model, where neuron connections decay exponentially with the distance, is characterized by exponents beta and gamma markedly different from those of mean field, respectively around 1 and 1.3. The exponents alpha and tau of avalanche size and duration distributions, equal to 1.5 and 2 in mean field, decrease respectively to 1.29 +/- 0.01 and 1.37 +/- 0.01. This seems to suggest the possibility of a different universality class for the model in finite dimension.
引用
收藏
页数:13
相关论文
共 32 条
[1]   powerlaw: A Python']Python Package for Analysis of Heavy-Tailed Distributions [J].
Alstott, Jeff ;
Bullmore, Edward T. ;
Plenz, Dietmar .
PLOS ONE, 2014, 9 (01)
[2]   Universal excursion and bridge shapes in ABBM/CIR/Bessel processes [J].
Baldassarri, Andrea .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2021, 2021 (08)
[3]   Does the 1/f frequency scaling of brain signals reflect self-organized critical states? [J].
Bedard, C. ;
Kroger, H. ;
Destexhe, A. .
PHYSICAL REVIEW LETTERS, 2006, 97 (11)
[4]  
Beggs JM, 2003, J NEUROSCI, V23, P11167
[5]   Avalanches in a Stochastic Model of Spiking Neurons [J].
Benayoun, Marc ;
Cowan, Jack D. ;
van Drongelen, Wim ;
Wallace, Edward .
PLOS COMPUTATIONAL BIOLOGY, 2010, 6 (07) :21
[6]   Subsampled Directed-Percolation Models Explain Scaling Relations Experimentally Observed in the Brain [J].
Carvalho, Tawan T. A. ;
Fontenele, Antonio J. ;
Girardi-Schappo, Mauricio ;
Feliciano, Thais ;
Aguiar, Leandro A. A. ;
Silva, Thais P. L. ;
de Vasconcelos, Nivaldo A. P. ;
Carelli, Pedro V. ;
Copelli, Mauro .
FRONTIERS IN NEURAL CIRCUITS, 2021, 14
[7]   Modeling neuronal avalanches and long-range temporal correlations at the emergence of collective oscillations: Continuously varying exponents mimic M/EEG results [J].
Dalla Porta, Leonardo ;
Copelli, Mauro .
PLOS COMPUTATIONAL BIOLOGY, 2019, 15 (04)
[8]   Critical behaviour of the stochastic Wilson-Cowan model [J].
de Candia, Antonio ;
Sarracino, Alessandro ;
Apicella, Ilenia ;
de Arcangelis, Lucilla .
PLOS COMPUTATIONAL BIOLOGY, 2021, 17 (08)
[9]   Comparative power spectral analysis of simultaneous elecroencephalographic and magnetoencephalographic recordings in humans suggests non-resistive extracellular media [J].
Dehghani, Nima ;
Bedard, Claude ;
Cash, Sydney S. ;
Halgren, Eric ;
Destexhe, Alain .
JOURNAL OF COMPUTATIONAL NEUROSCIENCE, 2010, 29 (03) :405-421
[10]   A Predictive Network Model of Cerebral Cortical Connectivity Based on a Distance Rule [J].
Ercsey-Ravasz, Maria ;
Markov, Nikola T. ;
Lamy, Camille ;
Van Essen, David C. ;
Knoblauch, Kenneth ;
Toroczkai, Zoltan ;
Kennedy, Henry .
NEURON, 2013, 80 (01) :184-197