Extension of free sets over commutative semirings

被引:1
作者
Shu, Qian-yu [1 ]
Wang, Xue-ping [2 ]
Qiao, Lei [2 ]
机构
[1] Nanjing Univ, Dept Math, Nanjing, Jiangsu, Peoples R China
[2] Sichuan Normal Univ, Sch Math Sci, Chengdu 610066, Sichuan, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Commutative semiring; semimodule; free set; free basis; LINEAR INDEPENDENCE; SEMILINEAR SPACES; BASES; MATRICES;
D O I
10.1080/03081087.2019.1704209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper deals with extensions of free sets over commutative semirings. First, we discuss a necessary and sufficient condition that a finitely generated -semimodule is free, and by the way, we give a necessary and sufficient condition that a finite set in a finitely generated -semimodule is free. We then use these necessary and sufficient conditions to investigate the conditions that a free set in a finitely generated -semimodule can be extended to a free basis.
引用
收藏
页码:3019 / 3030
页数:12
相关论文
共 22 条
  • [1] Akian M, 2009, CONTEMP MATH, V495, P1
  • [2] [Anonymous], 2004, P 7 CZECH JAP SEM DA
  • [3] [Anonymous], 1984, Linear Algebra over Commutative Rings
  • [4] [Anonymous], 1992, Advances in Soviet Mathematics
  • [5] [Anonymous], 1984, INCLINE ALGEBRA APPL
  • [6] Max-algebra: the linear algebra of combinatorics?
    Butkovic, P
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 367 (367) : 313 - 335
  • [7] Generators, extremals and bases of max cones
    Butkovic, Peter
    Schneider, Hans
    Sergeev, Sergei
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2007, 421 (2-3) : 394 - 406
  • [8] Linear independence in bottleneck algebras
    Cechlarova, K
    Plavka, J
    [J]. FUZZY SETS AND SYSTEMS, 1996, 77 (03) : 337 - 348
  • [9] Develin M., 2004, Documenta Mathematica, V9, P205, DOI DOI 10.4171/DM/154
  • [10] Algebraic analysis of fuzzy systems
    Di Nola, Antonio
    Lettieri, Ada
    Perfilieva, Irina
    Novak, Vilem
    [J]. FUZZY SETS AND SYSTEMS, 2007, 158 (01) : 1 - 22