A comparative study of bulk InGaAs and InGaAs/InGaAs strain-compensated Quantum Well Cells for thermophotovoltaic applications

被引:3
|
作者
Abbott, P [1 ]
Rohr, C [1 ]
Connolly, JP [1 ]
Ballard, I [1 ]
Barnham, KWJ [1 ]
Ginige, R [1 ]
Corbett, B [1 ]
Clarke, G [1 ]
Bland, SW [1 ]
Mazzer, M [1 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Blackett Lab, EXSS Phys, London SW7 2BW, England
关键词
D O I
10.1109/PVSC.2002.1190788
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
One of the main requirements for thermophotovoltaic (TPV) systems powered by fuel combustion is a low level of pollution. To achieve this, low combustion temperatures are needed. The most efficient narrow band emitters emit at long wavelengths, necessitating low band gap cells. Erbium oxide emits around 1500nm and we report an InGaAs p-n cell which is well matched to this spectrum. Two more suitable emitters are thulium oxide and holmium oxide, which emit around 1700nm and 1950nm respectively, beyond the band gap of lattice matched InGaAs. To absorb this emission, lattice mismatched materials must be used. The technique of strain compensation can prevent the creation of dislocations within the structure. We present results of a strain-compensated InGaAs/InGaAs Quantum Well Cell (QWC) which demonstrates the success of this structure in allowing wavelength response to be extended whilst displaying a lower dark current.
引用
收藏
页码:1058 / 1061
页数:4
相关论文
共 50 条
  • [21] Molecular beam epitaxy of strain-compensated InGaAs/GaAsP quantum-well intersubband photodetectors
    Bacher, K
    Massie, S
    Seaford, M
    JOURNAL OF CRYSTAL GROWTH, 1997, 175 : 977 - 982
  • [22] InGaAs/InGaAlAs Strain-compensated Multiple-quantum-well Lasers with Improved Temperature Characteristic
    SUN Ke
    WANG Jianhu
    ZHOU Dan
    PENG Jihu(State Key Lab. on Integrated Optoelectronics
    ChineseJournalofLasers, 1999, (05) : 3 - 5
  • [23] EBIC study of extended defects in InGaAs/InGaAs strain-balanced MQWs for thermophotovoltaic applications
    Tundo, S
    Mazzer, M
    Nasi, L
    Salviati, G
    Lazzarini, L
    Torsello, G
    Rohr, C
    Connolly, J
    Abbott, P
    Barnham, KWJ
    MICROSCOPY OF SEMICONDUCTING MATERIALS 2003, 2003, (180): : 581 - 584
  • [24] High-performance strain-compensated InGaAs/InAlAs quantum cascade lasers
    Liu, FQ
    Zhang, YZ
    Zhang, QS
    Ding, D
    Xu, B
    Wang, ZG
    Jiang, DS
    Sun, BQ
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2000, 15 (12) : L44 - L46
  • [25] MBE growth of strain-compensated InGaAs/InAlAs/InP quantum cascade lasers
    Gutowski, P.
    Sankowska, I.
    Karbownik, P.
    Pierscinska, D.
    Serebrennikova, O.
    Morawiec, M.
    Pruszynska-Karbownik, E.
    Golaszewska-Malec, K.
    Pierscinski, K.
    Muszalski, J.
    Bugajski, M.
    JOURNAL OF CRYSTAL GROWTH, 2017, 466 : 22 - 29
  • [26] Bandgaps and band offsets in strain-compensated InGaAs/InGaAsP multiple quantum wells
    Ma, CS
    Jin, Z
    Tian, FS
    Yang, NG
    Yang, SR
    Liu, SY
    SEMICONDUCTOR LASERS III, 1998, 3547 : 308 - 314
  • [27] Carrier confinement in strain-compensated InGaAs/GaAsP quantum-well laser with temperature insensitive threshold
    Susaki, W
    Yaku, H
    Hayakawa, T
    Fukunaga, T
    Asano, H
    IN-PLANE SEMICONDUCTOR LASERS V, 2001, 4287 : 176 - 187
  • [28] Improved responsivity at the L-band wavelength of a strain-compensated InGaAs multiple quantum well photodiode
    Uchida, T
    Yazaki, A
    Anayama, C
    Furuya, A
    Shirai, T
    Kobayashi, M
    ACTIVE AND PASSIVE OPTICAL COMPONENTS FOR WDM COMMUNICATION, 2001, 4532 : 146 - 153
  • [29] High temperature characteristics of 1.55 μm InGaAs/InGaAsP strain-compensated multiple quantum well lasers
    Ma, CS
    Guo, WB
    Liu, SY
    SEMICONDUCTOR OPTOELECTRONIC DEVICE MANUFACTURING AND APPLICATIONS, 2001, 4602 : 173 - 177
  • [30] Threshold characteristics of 1.55-μm InGaAs/InGaAsP strain-compensated quantum well lasers with zero net strain
    Ma, CS
    Wang, LJ
    Liu, SY
    OPTICAL ENGINEERING, 2001, 40 (03) : 460 - 465