Orbitally dominated Rashba-Edelstein effect in noncentrosymmetric antiferromagnets

被引:79
作者
Salemi, Leandro [1 ]
Berritta, Marco [1 ]
Nandy, Ashis K. [1 ,2 ]
Oppeneer, Peter M. [1 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, POB 516, S-75120 Uppsala, Sweden
[2] HBNI, Natl Inst Sci Educ & Res, Sch Phys Sci, Jatni 752050, Odisha, India
基金
瑞典研究理事会;
关键词
SPIN POLARIZATION; ELECTRIC-CURRENT; TORQUE; ORBITRONICS; DRIVEN;
D O I
10.1038/s41467-019-13367-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Efficient manipulation of magnetic order with electric current pulses is desirable for achieving fast spintronic devices. The Rashba-Edelstein effect, wherein spin polarization is electrically induced in noncentrosymmetric systems, provides a mean to achieve staggered spin-orbit torques. Initially predicted for spin, its orbital counterpart has been disregarded up to now. Here we report a generalized Rashba-Edelstein effect, which generates not only spin polarization but also orbital polarization, which we find to be far from being negligible. We show that the orbital Rashba-Edelstein effect does not require spin-orbit coupling to exist. We present first-principles calculations of the frequency-dependent spin and orbital Rashba-Edelstein tensors for the noncentrosymmetric antiferromagnets CuMnAs and Mn2Au. We show that the electrically induced local magnetization can exhibit Rashba-like or Dresselhaus-like symmetries, depending on the magnetic configuration. We compute sizable induced magnetizations at optical frequencies, which suggest that electric-field driven switching could be achieved at much higher frequencies.
引用
收藏
页数:10
相关论文
共 57 条
[1]   Linear optical properties of solids within the full-potential linearized augmented planewave method [J].
Ambrosch-Draxl, Claudia ;
Sofo, Jorge O. .
COMPUTER PHYSICS COMMUNICATIONS, 2006, 175 (01) :1-14
[2]   Antiferromagnetic spintronics [J].
Baltz, V. ;
Manchon, A. ;
Tsoi, M. ;
Moriyama, T. ;
Ono, T. ;
Tserkovnyak, Y. .
REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
[3]   Revealing the properties of Mn2Au for antiferromagnetic spintronics [J].
Barthem, V. M. T. S. ;
Colin, C. V. ;
Mayaffre, H. ;
Julien, M. -H. ;
Givord, D. .
NATURE COMMUNICATIONS, 2013, 4
[4]  
Baumgartner M, 2017, NAT NANOTECHNOL, V12, P980, DOI [10.1038/nnano.2017.151, 10.1038/NNANO.2017.151]
[5]  
Blaha P., 2018, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties
[6]   Writing and reading antiferromagnetic Mn2Au by Neel spin-orbit torques and large anisotropic magnetoresistance [J].
Bodnar, S. Yu. ;
Smejkal, L. ;
Turek, I. ;
Jungwirth, T. ;
Gomonay, O. ;
Sinova, J. ;
Sapozhnik, A. A. ;
Elmers, H. -J. ;
Klaui, M. ;
Jourdan, M. .
NATURE COMMUNICATIONS, 2018, 9
[7]  
BOIKO II, 1961, SOV PHYS-SOL STATE, V2, P1692
[8]  
Brataas A, 2012, NAT MATER, V11, P372, DOI [10.1038/NMAT3311, 10.1038/nmat3311]
[9]  
BYCHKOV YA, 1984, JETP LETT+, V39, P78
[10]  
Ciccarelli C, 2016, NAT PHYS, V12, P855, DOI [10.1038/NPHYS3772, 10.1038/nphys3772]