Multiple-Model Bernoulli Filters-Part I: A Gaussian Mixture Implementation

被引:0
|
作者
Jiang, Tongyang [1 ,2 ]
机构
[1] China Elect Technol Grp Corp, Res Inst 38, Hefei 230088, Peoples R China
[2] Zhejiang Univ, Coll Elect Engn, Hangzhou 310027, Zhejiang, Peoples R China
来源
PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016 | 2016年
关键词
Random finite set; Bernoulli filtering; multiple-model; Gaussian mixture; linear Gaussian models; JOINT DETECTION; TRACKING;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Bernoulli filter is an exact Bayesian filter for target tracking under the framework of random finite sets. It has been implemented by using Gaussian mixture (GM) and sequential Monte Carlo (SMC) techniques for joint target detection and tracking. However, a single model is not enough to accommodate a maneuvering target that switches between a set of motion models. In this paper, we extend the Bernoulli filter to switching motion models, and propose a multiple-model (MM) Bernoulli filter for a maneuvering target. Then we give a GM implementation of the MM Bernoulli filter for linear Gaussian models. Finally, a numerical example is presented to verify the effectiveness of the GM-MM Bernoulli filter for a maneuvering target.
引用
收藏
页码:4819 / 4824
页数:6
相关论文
共 50 条
  • [1] Multiple-Model Bernoulli Filters-Part II: A Sequential Monte Carlo Implementation
    Jiang, Tongyang
    PROCEEDINGS OF THE 35TH CHINESE CONTROL CONFERENCE 2016, 2016, : 4825 - 4829
  • [2] Gaussian Mixture Multiple-Model Multi-Bernoulli Filters for Nonlinear Models Via Unscented Transforms
    Jiang, Tongyang
    Liu, Meiqin
    Wang, Xie
    Zhang, Senlin
    2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1262 - 1269
  • [3] On multiple-model extended target multi-Bernoulli filters
    Jiang, Tongyang
    Liu, Meiqin
    Fan, Zhen
    Zhang, Senlin
    DIGITAL SIGNAL PROCESSING, 2016, 59 : 76 - 85
  • [4] Multiple-model multiple-hypothesis filter with Gaussian mixture reduction
    Eras-Herrera, W. Y.
    Mesquita, A. R.
    Teixeira, B. O. S.
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2018, 32 (02) : 286 - 300
  • [5] Implementation of multiple-model multi-Bernoulli filter for nonlinear models
    College of Electrical Engineering, Zhejiang University, Hangzhou
    310027, China
    Huazhong Ligong Daxue Xuebao, 9 (7-12 and 18): : 7 - 12
  • [6] Gaussian implementation of the multi-Bernoulli mixture filter
    Garcia-Fernandez, Angel E.
    Xia, Yuxuan
    Granstrom, Karl
    Svensson, Lennart
    Williamst, Jason L.
    2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [7] Model-set design for multiple-model method - Part I
    Li, XR
    PROCEEDINGS OF THE FIFTH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOL I, 2002, : 26 - 33
  • [8] A Gaussian mixture multiple-model belief propagation filter for multisensor-multitarget tracking
    Zheng, Feng
    Tian, Yu
    Zhan, Weicong
    Yu, Jiancheng
    Liu, Kaizhou
    SIGNAL PROCESSING, 2024, 220
  • [9] RF Channel-Select Micromechanical Disk Filters-Part I: Design
    Ozgurluk, Alper
    Akgul, Mehmet
    Nguyen, Clark T. -C.
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2019, 66 (01) : 192 - 217
  • [10] Particle Gaussian mixture filters-I
    Raihan, Dilshad
    Chakravorty, Suman
    AUTOMATICA, 2018, 98 : 331 - 340