A Microwave Synthesis of Mesoporous NiCo2O4 Nanosheets as Electrode Materials for Lithium-Ion Batteries and Supercapacitors

被引:132
作者
Mondal, Anjon Kumar [1 ]
Su, Dawei [1 ]
Chen, Shuangqiang [1 ]
Kretschmer, Katja [1 ]
Xie, Xiuqiang [1 ]
Ahn, Hyo-Jun [2 ]
Wang, Guoxiu [1 ,3 ]
机构
[1] Univ Technol Sydney, Ctr Clean Energy Technol, Sch Chem & Forens Sci, Sydney, NSW 2007, Australia
[2] Gyeongsang Natl Univ, Sch Mat Sci & Engn, Jinju 660701, South Korea
[3] Nanjing Univ Aeronaut & Astronaut, Coll Mat Sci & Technol, Nanjing 210016, Jiangsu, Peoples R China
基金
澳大利亚研究理事会;
关键词
electrodes; lithium ion batteries; NiCo2O4; nanosheets; porous structure; supercapacitors; HIGH-PERFORMANCE SUPERCAPACITOR; FACILE SYNTHESIS; ANODE MATERIAL; NANOWIRE ARRAYS; MICROSPHERES; STORAGE; ENERGY; CO3O4; CHALLENGES;
D O I
10.1002/cphc.201402654
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A facile microwave method was employed to synthesize NiCo2O4 nanosheets as electrode materials for lithium-ion batteries and supercapacitors. The structure and morphology of the materials were characterized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy and Brunauer-Emmett-Teller methods. Owing to the porous nanosheet structure, the NiCo2O4 electrodes exhibited a high reversible capacity of 891 mAhg(-1) at a current density of 100 mAg(-1), good rate capability and stable cycling performance. When used as electrode materials for supercapacitors, NiCo2O4 nanosheets demonstrated a specific capacitance of 400 Fg(-1) at a current density of 20 Ag-1 and superior cycling stability over 5000 cycles. The excellent electrochemical performance could be ascribed to the thin porous structure of the nanosheets, which provides a high specific surface area to increase the electrode-electrolyte contact area and facilitate rapid ion transport.
引用
收藏
页码:169 / 175
页数:7
相关论文
共 48 条
  • [1] New trends in electrochemical supercapacitors
    Arbizzani, C
    Mastragostino, M
    Soavi, F
    [J]. JOURNAL OF POWER SOURCES, 2001, 100 (1-2) : 164 - 170
  • [2] Facile synthesis of loaf-like ZnMn2O4 nanorods and their excellent performance in Li-ion batteries
    Bai, Zhongchao
    Fan, Na
    Sun, Changhui
    Ju, Zhicheng
    Guo, Chunli
    Yang, Jian
    Qian, Yitai
    [J]. NANOSCALE, 2013, 5 (06) : 2442 - 2447
  • [3] Superior lithium storage properties of α-Fe2O3 nano-assembled spindles
    Banerjee, Abhik
    Aravindan, Vanchiappan
    Bhatnagar, Sumit
    Mhamane, Dattakumar
    Madhavi, Srinivasan
    Ogale, Satishchandra
    [J]. NANO ENERGY, 2013, 2 (05) : 890 - 896
  • [4] Microwave chemistry for inorganic nanomaterials synthesis
    Bilecka, Idalia
    Niederberger, Markus
    [J]. NANOSCALE, 2010, 2 (08) : 1358 - 1374
  • [5] Electrochemical evaluation of CuFe2O4 samples obtained by sol-gel methods used as anodes in lithium batteries
    Bomio, M.
    Lavela, P.
    Tirado, J. L.
    [J]. JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2008, 12 (06) : 729 - 737
  • [6] High-performance supercapacitor and lithium-ion battery based on 3D hierarchical NH4F-induced nickel cobaltate nanosheet-nanowire cluster arrays as self-supported electrodes
    Chen, Yuejiao
    Qu, Baihua
    Hu, Lingling
    Xu, Zhi
    Li, Qiuhong
    Wang, Taihong
    [J]. NANOSCALE, 2013, 5 (20) : 9812 - 9820
  • [7] Conway B.E., 1999, ELECTROCHEM SUPERCAP, DOI DOI 10.1007/978-1-4757-3058-6
  • [8] Core-ring structured NiCo2O4 nanoplatelets:: Synthesis, characterization, and electrocatalytic applications
    Cui, Bai
    Lin, Hong
    Li, Jian-Bao
    Li, Xin
    Yang, Jun
    Tao, Jie
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2008, 18 (09) : 1440 - 1447
  • [9] Recent developments in proton exchange membranes for fuel cells
    Devanathan, Ram
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (01) : 101 - 119
  • [10] Challenges in the development of advanced Li-ion batteries: a review
    Etacheri, Vinodkumar
    Marom, Rotem
    Elazari, Ran
    Salitra, Gregory
    Aurbach, Doron
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) : 3243 - 3262