ON A CLASS OF p(x)-LAPLACIAN EQUATIONS WITHOUT ANY GROWTH AND AMBROSETTI-RABINOWITZ CONDITIONS

被引:0
作者
Cao, Xiao-Feng [1 ]
Ge, Bin [1 ]
Zhang, Bei-Lei [1 ]
机构
[1] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
SUB-SUPERSOLUTION METHOD; VARIABLE EXPONENT; DIFFERENTIAL-EQUATIONS; ELLIPTIC-EQUATIONS; DIRICHLET PROBLEM; EXISTENCE; MULTIPLICITY; CONCAVE; SPACES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The aim of this paper is to establish the existence of nontrivial solutions for p(x)-Laplacian equations without any growth and Ambrosetti-Rabinowitz conditions. Employing the cutoff function approach, we show that auxiliary problem has at least one nontrivial solution. Furthermore, we obtain nontrivial solutions for original problems using De Giorgi iteration. The results presented here extend some recent contributions obtained for problems driven by the p(x)-Laplacian or even to more general differential operators.
引用
收藏
页码:259 / 280
页数:22
相关论文
共 41 条
[1]   Regularity results for stationary electro-rheological fluids [J].
Acerbi, E ;
Mingione, G .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2002, 164 (03) :213-259
[2]   Form estimates for the p(x)-laplacean [J].
Allegretto, W. .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2007, 135 (07) :2177-2185
[3]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[4]   Elliptic equations and systems with nonstandard growth conditions: Existence, uniqueness and localization properties of solutions [J].
Antontsev, Stanislav ;
Shmarev, Sergei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 65 (04) :728-761
[5]   Existence and Localization Results for p(x)-Laplacian via Topological Methods [J].
Cekic, B. ;
Mashiyev, R. A. .
FIXED POINT THEORY AND APPLICATIONS, 2010,
[6]  
Chang K.C., 1986, Critical Point Theory and Applications
[7]   Variable exponent, linear growth functionals in image restoration [J].
Chen, Yunmei ;
Levine, Stacey ;
Rao, Murali .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2006, 66 (04) :1383-1406
[8]   On some multiple solutions for a p(x)-Laplacian equation with critical growth [J].
da Silva, Joao Pablo P. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 436 (02) :782-795
[9]   Infinitely many non-negative solutions for a Dirichlet problem involving p(x)-Laplacian [J].
Dai, Guowei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) :5840-5849
[10]   Lebesgue and Sobolev Spaces with Variable Exponents [J].
Diening, Lars ;
Harjulehto, Petteri ;
Hasto, Peter ;
Ruzicka, Michael .
LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 :1-+