Global spherically symmetric classical solution to the Navier-Stokes-Maxwell system with large initial data and vacuum

被引:9
作者
Hong GuangYi [1 ]
Hou XiaoFeng [1 ]
Peng HongYun [1 ]
Zhu ChangJiang [1 ]
机构
[1] Cent China Normal Univ, Sch Math & Stat, Wuhan 430079, Peoples R China
基金
中国国家自然科学基金;
关键词
Navier-Stokes-Maxwell system; global classical solution; vacuum; DENSITY-DEPENDENT VISCOSITY; BOUNDARY-VALUE-PROBLEMS; POISSON EQUATIONS; TIME BEHAVIOR; EXISTENCE; MOTION; FLOWS;
D O I
10.1007/s11425-014-4896-x
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the initial boundary value problem to the system of the compressible Navier-Stokes equations coupled with the Maxwell equations through the Lorentz force in a bounded annulus Omega of R-3. And a result on the existence and uniqueness of global spherically symmetric classical solutions is obtained. Here the initial data could be large and initial vacuum is allowed.
引用
收藏
页码:2463 / 2484
页数:22
相关论文
共 30 条
[1]  
BOURGUIGNON J. P., 1931, J. Funct. Anal., V15, P341, DOI [10.1016/0022-1236(74)90027-5, DOI 10.1016/0022-1236(74)90027-5]
[2]   Unique solvability of the initial boundary value problems for compressible viscous fluids [J].
Cho, Y ;
Choe, HJ ;
Kim, H .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (02) :243-275
[3]   On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities [J].
Cho, YG ;
Kim, H .
MANUSCRIPTA MATHEMATICA, 2006, 120 (01) :91-129
[4]   Global existence of the radially symmetric solutions of the Navier-Stokes equations for the isentropic compressible fluids [J].
Choe, HJ ;
Kim, HS .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (01) :1-28
[6]   GLOBAL SPHERICALLY SYMMETRIC CLASSICAL SOLUTION TO COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH LARGE INITIAL DATA AND VACUUM [J].
Ding, Shijin ;
Wen, Huanyao ;
Yao, Lei ;
Zhu, Changjiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2012, 44 (02) :1257-1278
[7]   Global classical large solutions to 1D compressible Navier-Stokes equations with density-dependent viscosity and vacuum [J].
Ding, Shijin ;
Wen, Huanyao ;
Zhu, Changjiang .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2011, 251 (06) :1696-1725
[8]   GREEN'S FUNCTION AND LARGE TIME BEHAVIOR OF THE NAVIER-STOKES-MAXWELL SYSTEM [J].
Duan, Renjun .
ANALYSIS AND APPLICATIONS, 2012, 10 (02) :133-197
[9]  
Fan JS, 2009, OSAKA J MATH, V46, P863
[10]  
Galdi GP., 1994, An Introduction to the Mathematical Theory of the Navier-Stokes Equations