Dynamic Approximation with Feedback Control for Energy-Efficient Recurrent Neural Network Hardware

被引:10
|
作者
Kung, Jaeha [1 ]
Kim, Duckhwan [1 ]
Mukhopadhyay, Saibal [1 ]
机构
[1] Georgia Inst Technol, 266 Ferst Dr, Atlanta, GA 30332 USA
来源
ISLPED '16: PROCEEDINGS OF THE 2016 INTERNATIONAL SYMPOSIUM ON LOW POWER ELECTRONICS AND DESIGN | 2016年
基金
美国国家科学基金会;
关键词
Approximate computing; energy efficiency; machine learning hardware; recurrent neural network;
D O I
10.1145/2934583.2934626
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper presents methodology of feedback-controlled dynamic approximation to enable energy-accuracy trade-off in digital recurrent neural network (RNN). A low-power digital RNN engine is presented that employs the proposed dynamic approximation. The on-chip feedback controller is realized by utilizing hysteretic or proportional controller. The dynamic adaptation of bit-precisions during the RNN computation is selected as approximation approach. Considering various applications, the digital RNN engine designed in 28nm CMOS shows similar to 36% average energy saving compared to the baseline case, with only similar to 4% of accuracy degradation on average.
引用
收藏
页码:168 / 173
页数:6
相关论文
共 50 条
  • [31] COSY: An Energy-Efficient Hardware Architecture for Deep Convolutional Neural Networks based on Systolic Array
    Yin, Chen
    Chen, Qiang
    Tian, Miren
    Ji, Mohan
    Zou, Chenglong
    Wang, Yin'an
    Wang, Bo
    2017 IEEE 23RD INTERNATIONAL CONFERENCE ON PARALLEL AND DISTRIBUTED SYSTEMS (ICPADS), 2017, : 180 - 189
  • [32] An Energy-Efficient Imprecise Adder with a Lower-part Constant Approximation
    Seo, Hyoju
    Yang, Yoon Seok
    Kim, Yongtae
    2020 17TH INTERNATIONAL SOC DESIGN CONFERENCE (ISOCC 2020), 2020, : 143 - 144
  • [33] Cooperative Arithmetic-Aware Approximation Techniques for Energy-Efficient Multipliers
    Leon, Vasileios
    Asimakopoulos, Konstantinos
    Xydis, Sotirios
    Soudris, Dimitrios
    Pekmestzi, Kiamal
    PROCEEDINGS OF THE 2019 56TH ACM/EDAC/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2019,
  • [34] The Perfect Match: Selecting Approximate Multipliers for Energy-Efficient Neural Network Inference
    Spantidi, Ourania
    Anagnostopoulos, Iraklis
    2023 IEEE 24TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE SWITCHING AND ROUTING, HPSR, 2023,
  • [35] Energy-efficient cooperative routing scheme with recurrent neural network based decision making system for wireless multimedia sensor networks
    M Nagalingayya
    Basavaraj S Mathpati
    Multimedia Tools and Applications, 2022, 81 : 39785 - 39801
  • [36] Energy-efficient cooperative routing scheme with recurrent neural network based decision making system for wireless multimedia sensor networks
    Nagalingayya, M.
    Mathpati, Basavaraj S.
    MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (27) : 39785 - 39801
  • [37] An Energy-Efficient Bayesian Neural Network Implementation Using Stochastic Computing Method
    Jia, Xiaotao
    Gu, Huiyi
    Liu, Yuhao
    Yang, Jianlei
    Wang, Xueyan
    Pan, Weitao
    Zhang, Youguang
    Cotofana, Sorin
    Zhao, Weisheng
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (09) : 12913 - 12923
  • [38] Energy-Efficient Brain Floating Point Convolutional Neural Network Using Memristors
    Tong, Shao-Qin
    Bao, Han
    Li, Jian-Cong
    Yang, Ling
    Zhou, Hou-Ji
    Li, Yi
    Miao, Xiang-Shui
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2024, 71 (05) : 3293 - 3300
  • [39] A Flexible and Energy-Efficient Convolutional Neural Network Acceleration With Dedicated ISA and Accelerator
    Chen, Xiaobai
    Yu, Zhiyi
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2018, 26 (07) : 1408 - 1412
  • [40] Energy-Efficient Power Control in Wireless Networks With Spatial Deep Neural Networks
    Zhang, Ticao
    Mao, Shiwen
    IEEE TRANSACTIONS ON COGNITIVE COMMUNICATIONS AND NETWORKING, 2020, 6 (01) : 111 - 124