Minimal Liouville gravity correlation numbers from Douglas string equation

被引:18
作者
Belavin, Alexander [1 ,2 ,3 ]
Dubrovin, Boris [4 ,5 ,6 ]
Mukhametzhanov, Baur [1 ,7 ]
机构
[1] LD Landau Theoret Phys Inst, Chernogolovka 142432, Russia
[2] Moscow Inst Phys & Techol, Dolgoprudnyi 141700, Russia
[3] Inst Informat Transmiss Problems, Moscow 127994, Russia
[4] Int Sch Adv Studies SISSA, I-34136 Trieste, Italy
[5] Moscow MV Lomonosov State Univ, NN Bogolyubov Lab Geometr Methods Math Phys, Moscow 119899, Russia
[6] VA Steklov Math Inst, Moscow 119991, Russia
[7] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
基金
欧洲研究理事会;
关键词
2D Gravity; Conformal and W Symmetry; Matrix Models; 2-DIMENSIONAL QUANTUM-GRAVITY; FIELD-THEORY; ONE-DIMENSION; LESS; 2D;
D O I
10.1007/JHEP01(2014)156
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We continue the study of (q, p) Minimal Liouville Gravity with the help of Douglas string equation. We generalize the results of [1, 2], where Lee-Yang series (2, 2s + 1) was studied, to (3, 3s + p(0)) Minimal Liouville Gravity, where p(0) = 1, 2. We demonstrate that there exist such coordinates tau(m,n) on the space of the perturbed Minimal Liouville Gravity theories, in which the partition function of the theory is determined by the Douglas string equation. The coordinates tau(m,n) are related in a non-linear fashion to the natural coupling constants lambda(m,n) of the perturbations of Minimal Lioville Gravity by the physical operators O-m,O-n. We find this relation from the requirement that the correlation numbers in Minimal Liouville Gravity must satisfy the con formal and fusion selection rules. After fixing this relation we compute three- and four-point correlation numbers when they are not zero. The results are in agreement with the direct calculations in Minimal Liouville Gravity available in the literature [3-5]
引用
收藏
页数:51
相关论文
共 28 条
[1]  
ADLER M, 1979, INVENT MATH, V50, P219
[2]  
[Anonymous], 1995, SPRINGER LECT NOTES
[3]   Integrals over moduli spaces, ground ring, and four-point function in minimal Liouville gravity [J].
Belavin, A. A. ;
Zamolodchikov, Al. B. .
THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 147 (03) :729-754
[4]   On correlation numbers in 2D minimal gravity and matrix models [J].
Belavin, A. A. ;
Zamolodchikov, A. B. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2009, 42 (30)
[5]   INFINITE CONFORMAL SYMMETRY IN TWO-DIMENSIONAL QUANTUM-FIELD THEORY [J].
BELAVIN, AA ;
POLYAKOV, AM ;
ZAMOLODCHIKOV, AB .
NUCLEAR PHYSICS B, 1984, 241 (02) :333-380
[6]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[7]  
DIFRANCESCO P, 1995, PHYS REP, V254, P1, DOI 10.1016/0370-1573(94)00084-G
[8]   WORLD-SHEET AND SPACE-TIME PHYSICS IN 2-DIMENSIONAL (SUPER)STRING THEORY [J].
DIFRANCESCO, P ;
KUTASOV, D .
NUCLEAR PHYSICS B, 1992, 375 (01) :119-170
[9]   TOPOLOGICAL STRINGS IN D-LESS-THAN-1 [J].
DIJKGRAAF, R ;
VERLINDE, H ;
VERLINDE, E .
NUCLEAR PHYSICS B, 1991, 352 (01) :59-86
[10]   STRINGS IN LESS THAN ONE DIMENSION AND THE GENERALIZED KDV HIERARCHIES [J].
DOUGLAS, MR .
PHYSICS LETTERS B, 1990, 238 (2-4) :176-180