DIRAC LIE GROUPS

被引:14
作者
Li-Bland, David [1 ]
Meinrenken, Eckhard [2 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
[2] Univ Toronto, Dept Math, Toronto, ON M4S 2E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Poisson Lie Groups; Multiplicative Dirac Structures; Multiplicative Courant algebroids; Lie groupoids; Lie bialgebras; Manin triples; Multiplicative Manin pairs; quasi-Poisson geometry; Group valued moment maps; YANG-BAXTER EQUATIONS; MOMENT MAPS; 2ND-ORDER GEOMETRY; BIALGEBROIDS; MANIFOLDS; ALGEBROIDS; DRINFELD; PAIRS;
D O I
10.4310/AJM.2014.v18.n5.a2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A classical theorem of Drinfel'd states that the category of simply connected Poisson Lie groups H is isomorphic to the category of Manin triples (d, g, h), where h is the Lie algebra of H. In this paper, we consider Dirac Lie groups, that is, Lie groups H endowed with a multiplicative Courant algebroid A and a Dirac structure E subset of A for which the multiplication is a Dirac morphism. It turns out that the simply connected Dirac Lie groups are classified by so-called Dirac Manin triples. We give an explicit construction of the Dirac Lie group structure defined by a Dirac Manin triple, and develop its basic properties.
引用
收藏
页码:779 / 815
页数:37
相关论文
共 38 条
[1]  
Alekseev A, 2009, ASTERISQUE, P131
[2]  
Alekseev A, 1998, J DIFFER GEOM, V48, P445
[3]  
Alekseev A, 2000, J DIFFER GEOM, V56, P133
[4]  
Alekseev A., Derived brackets and Courant algebroids
[5]  
[Anonymous], 2003, PhD thesis
[6]  
[Anonymous], 1993, DIRAC STRUCTURES INT
[7]  
[Anonymous], Private communication
[8]  
Bursztyn H, 2009, MATH RES LETT, V16, P215
[9]   DIRAC MANIFOLDS [J].
COURANT, TJ .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1990, 319 (02) :631-661
[10]  
Drinfel'd V.G., 1989, QUASIHOPF ALGEBRAS A