Disturbance decoupling for descriptor systems by state feedback

被引:27
作者
Chu, DL
Mehrmann, V
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[2] TU Chemnitz, Fak Math, D-09107 Chemnitz, Germany
关键词
descriptor system; state feedback; disturbance decoupling; stability; orthogonal matrix transformation;
D O I
10.1137/S0363012900331891
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the disturbance decoupling problem for linear time invariant descriptor systems. We give necessary and sufficient conditions for the existence of a solution to the disturbance decoupling problem with or without stability via a proportional and/or derivative feedback that also makes the resulting closed-loop system regular and/or of index at most one. All results are proved constructively based on condensed forms that can be computed using orthogonal matrix transformations, i.e., transformations that can be implemented in a numerically stable way.
引用
收藏
页码:1830 / 1858
页数:29
相关论文
共 29 条
[11]  
Dai L., 1989, LECT NOTES CONTROL I, V118
[12]   THE GENERALIZED SCHUR DECOMPOSITION OF AN ARBITRARY PENCIL-A - LAMBDA-B - ROBUST SOFTWARE WITH ERROR-BOUNDS AND APPLICATIONS .1. THEORY AND ALGORITHMS [J].
DEMMEL, J ;
KAGSTROM, B .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1993, 19 (02) :160-174
[13]   ON DISTURBANCE DECOUPLING IN DESCRIPTOR SYSTEMS [J].
FLETCHER, LR ;
AASARAAI, A .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1989, 27 (06) :1319-1332
[14]  
Gantmacher F R, 1959, THEORY MATRICES, VI
[15]  
Golub G.H., 2013, MATRIX COMPUTATIONS
[16]  
HAGEL S, 1994, WORKSH ID AN ENTW ME, P67
[17]  
Knobloch HW., 1985, LINEARE KONTROLLTHEO
[18]   The linear quadratic optimal control problem for linear descriptor systems with variable coefficients [J].
Kunkel, P ;
Mehrmann, V .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1997, 10 (03) :247-264
[19]   STRUCTURAL SOLUTION OF THE DISTURBANCE DECOUPLING PROBLEM FOR IMPLICIT LINEAR DISCRETE-TIME-SYSTEMS [J].
LEBRET, G .
CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 1994, 13 (2-3) :311-327
[20]  
Mehrmann VL., 1991, The Autonomous Linear Quadratic Control Problem, Lecture Notes in Control and Information Sciences