THE KINETIC CUCKER-SMALE MODEL: WELL-POSEDNESS AND ASYMPTOTIC BEHAVIOR

被引:16
作者
Chen, Zili [1 ]
Yin, Xiuxia [1 ]
机构
[1] Nanchang Univ, Sch Sci, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Cucker-Smale model; asymptotic behavior; velocity-spatial moment; velocity-spatial support; VLASOV-POISSON SYSTEM; GLOBAL EXISTENCE; FLOCKING DYNAMICS; WEAK SOLUTIONS; TIME DECAY; MOMENTS; PROPAGATION; REGULARITY; EQUATION; LIMIT;
D O I
10.1137/18M1215001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider well-posedness and asymptotic behavior of solutions to the kinetic Cucker-Smale model. Based on a new Lyapunov functional, we establish the global existence and uniqueness of classical solutions as well as measure-valued solutions if the initial data have compact velocity-spatial support. We also get a global weak solution if the initial datum has a bounded velocity-spatial moment of order 1. Moreover, some velocity-spatial moments decay for these solutions.
引用
收藏
页码:3819 / 3853
页数:35
相关论文
共 39 条
[1]  
[Anonymous], 2008, Math. Action
[2]   A WELL-POSEDNESS THEORY IN MEASURES FOR SOME KINETIC MODELS OF COLLECTIVE MOTION [J].
Canizo, J. A. ;
Carrillo, J. A. ;
Rosado, J. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (03) :515-539
[3]  
Carrillo Jose A., 2014, ESAIM: Proceedings and Surveys, V47, P17, DOI 10.1051/proc/201447002
[4]   GLOBAL-IN-TIME WEAK MEASURE SOLUTIONS AND FINITE-TIME AGGREGATION FOR NONLOCAL INTERACTION EQUATIONS [J].
Carrillo, J. A. ;
Difrancesco, M. ;
Figalli, A. ;
Laurent, T. ;
Slepcev, D. .
DUKE MATHEMATICAL JOURNAL, 2011, 156 (02) :229-271
[5]   ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL [J].
Carrillo, J. A. ;
Fornasier, M. ;
Rosado, J. ;
Toscani, G. .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) :218-236
[6]   ASYMPTOTIC GROWTH OF SUPPORT AND UNIFORM DECAY OF MOMENTS FOR THE VLASOV-POISSON SYSTEM [J].
Chen, Zili ;
Li, Xiuting .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (04) :4180-4202
[7]   Global existence and uniqueness to the Cauchy problem of the BGK equation with infinite energy [J].
Chen, Zili ;
Zhang, Xianwen .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2016, 39 (11) :3116-3135
[8]   Global Existence to the Vlasov-Poisson System and Propagation of Moments Without Assumption of Finite Kinetic Energy [J].
Chen, Zili ;
Zhang, Xianwen .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2016, 343 (03) :851-879
[9]   Emergence of bi-cluster flocking for the Cucker-Smale model [J].
Cho, Junghee ;
Ha, Seung-Yeal ;
Huang, Feimin ;
Jin, Chunyin ;
Ko, Dongnam .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (06) :1191-1218
[10]   Flocking in noisy environments [J].
Cucker, Felipe ;
Mordecki, Ernesto .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2008, 89 (03) :278-296