Macroscopic loop amplitudes in the multi-cut two-matrix models

被引:6
作者
Chan, Chuan-Tsung [3 ]
Irie, Hirotaka [1 ,2 ]
Shih, Sheng-Yu Darren [1 ,2 ,4 ]
Yeh, Chi-Hsien [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 10617, Taiwan
[3] Tunghai Univ, Dept Phys, Taichung 40704, Taiwan
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
关键词
UNITARY-MATRIX MODELS; ISING-MODEL; 2D GRAVITY; EQUATIONS; STRINGS; GEOMETRY; SOLITONS; PHASE; LESS;
D O I
10.1016/j.nuclphysb.2009.10.017
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Multi-cut critical points and their macroscopic loop amplitudes are studied in the multi-cut two-matrix models, based on an extension of the prescription developed by Daul, Kazakov and Kostov. After identifying possible critical points and potentials in the multi-cut matrix models, we calculate the macroscopic loop amplitudes in the Z(k) symmetric background. With a natural large N ansatz for the matrix Lax operators, a sequence of new solutions for the amplitudes in the Z(k) symmetric k-cut two-matrix models are obtained, which are realized by the Jacobi polynomials. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:536 / 580
页数:45
相关论文
共 72 条
[51]   STRINGS WITH DISCRETE TARGET SPACE [J].
KOSTOV, IK .
NUCLEAR PHYSICS B, 1992, 376 (03) :539-598
[52]   THE DISPERSIONLESS LAX EQUATIONS AND TOPOLOGICAL MINIMAL MODELS [J].
KRICHEVER, I .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1992, 143 (02) :415-429
[53]   Exact vs. semiclassical target space of the minimal string [J].
Maldacena, J ;
Seiberg, N ;
Moore, G ;
Shih, D .
JOURNAL OF HIGH ENERGY PHYSICS, 2004, (10) :405-444
[54]   ON THE ORIGIN OF INTEGRABILITY IN MATRIX MODELS [J].
MARTINEC, EJ .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1991, 138 (03) :437-449
[55]   Strings from tachyons:: the c=1 matrix reloaded -: art. no. 054 [J].
McGreevy, J ;
Verlinde, H .
JOURNAL OF HIGH ENERGY PHYSICS, 2003, (12) :1249-1276
[56]   A METHOD OF INTEGRATION OVER MATRIX VARIABLES [J].
MEHTA, ML .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1981, 79 (03) :327-340
[57]  
MOORE G, 1990, PROG THEOR PHYS SUPP, P255, DOI 10.1143/PTPS.102.255
[58]   GEOMETRY OF THE STRING EQUATIONS [J].
MOORE, G .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 133 (02) :261-304
[59]   FROM LOOPS TO STATES IN 2-DIMENSIONAL QUANTUM-GRAVITY [J].
MOORE, G ;
SEIBERG, N ;
STAUDACHER, M .
NUCLEAR PHYSICS B, 1991, 362 (03) :665-709
[60]   PAINLEVE II AND ODD POLYNOMIALS [J].
NAPPI, CR .
MODERN PHYSICS LETTERS A, 1990, 5 (32) :2773-2776