Macroscopic loop amplitudes in the multi-cut two-matrix models

被引:6
作者
Chan, Chuan-Tsung [3 ]
Irie, Hirotaka [1 ,2 ]
Shih, Sheng-Yu Darren [1 ,2 ,4 ]
Yeh, Chi-Hsien [1 ,2 ]
机构
[1] Natl Taiwan Univ, Dept Phys, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Ctr Theoret Sci, Taipei 10617, Taiwan
[3] Tunghai Univ, Dept Phys, Taichung 40704, Taiwan
[4] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
关键词
UNITARY-MATRIX MODELS; ISING-MODEL; 2D GRAVITY; EQUATIONS; STRINGS; GEOMETRY; SOLITONS; PHASE; LESS;
D O I
10.1016/j.nuclphysb.2009.10.017
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
Multi-cut critical points and their macroscopic loop amplitudes are studied in the multi-cut two-matrix models, based on an extension of the prescription developed by Daul, Kazakov and Kostov. After identifying possible critical points and potentials in the multi-cut matrix models, we calculate the macroscopic loop amplitudes in the Z(k) symmetric background. With a natural large N ansatz for the matrix Lax operators, a sequence of new solutions for the amplitudes in the Z(k) symmetric k-cut two-matrix models are obtained, which are realized by the Jacobi polynomials. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:536 / 580
页数:45
相关论文
共 72 条
[1]   A survey on third and fourth kind of Chebyshev polynomials and their applications [J].
Aghigh, Kamal ;
Masjed-Jamei, M. ;
Dehghan, Mehdi .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 199 (01) :2-12
[2]  
ANDREWS GE, 1999, SPECIAL FUNCTIONS EN, V71, P684
[3]  
[Anonymous], ARXIVHEPTH0101152
[4]  
[Anonymous], 2004, JHEP, DOI 10.1088/1126-6708/2004/02/021[hep-th/0312170]
[5]   MICROSCOPIC AND MACROSCOPIC LOOPS IN NONPERTURBATIVE 2-DIMENSIONAL GRAVITY [J].
BANKS, T ;
DOUGLAS, MR ;
SEIBERG, N ;
SHENKER, SH .
PHYSICS LETTERS B, 1990, 238 (2-4) :279-286
[6]   THE ISING-MODEL COUPLED TO 2D GRAVITY - A NONPERTURBATIVE ANALYSIS [J].
BREZIN, E ;
DOUGLAS, MR ;
KAZAKOV, V ;
SHENKER, SH .
PHYSICS LETTERS B, 1990, 237 (01) :43-46
[7]   PLANAR DIAGRAMS [J].
BREZIN, E ;
ITZYKSON, C ;
PARISI, G ;
ZUBER, JB .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1978, 59 (01) :35-51
[8]   EXACTLY SOLVABLE FIELD-THEORIES OF CLOSED STRINGS [J].
BREZIN, E ;
KAZAKOV, VA .
PHYSICS LETTERS B, 1990, 236 (02) :144-150
[9]   LOOP EQUATIONS AND THE TOPOLOGICAL PHASE OF MULTICUT MATRIX MODELS [J].
CRNKOVIC, C ;
DOUGLAS, M ;
MOORE, G .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1992, 7 (31) :7693-7711
[10]   MULTICRITICAL MULTI-CUT MATRIX MODELS [J].
CRNKOVIC, C ;
MOORE, G .
PHYSICS LETTERS B, 1991, 257 (3-4) :322-328