Periodic shadowing in iterated function systems

被引:2
|
作者
Darabi, Ali [1 ]
机构
[1] Shahid Chamran Univ Ahvaz, Dept Math, Ahvaz, Iran
关键词
Periodic shadowing; shadowing; iterated function systems; expansive; uniformly contracting; uniformly expanding;
D O I
10.1142/S1793557122500644
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we introduce the notion of periodic shadowing property on iterated function systems, IP& for short, and then some results will be obtained and compare with similar ones in the references. Among those results, we prove that every strongly expansive IFS with the shadowing property has the periodic shadowing property. In addition, like the shadowing property, we show that every uniformly expanding IFS has the periodic shadowing property. However, the periodic shadowing property is fulfilled for the uniformly contracting IFS provided that it is expansive.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Overlapping Iterated Function Systems on a Segment
    Barnsley, M.
    Igudesman, K. B.
    RUSSIAN MATHEMATICS, 2012, 56 (12) : 1 - 12
  • [22] Accumulation points of iterated function systems
    Keen, L
    Lakic, N
    COMPLEX DYNAMICS, 2006, 396 : 101 - +
  • [23] Cyclic Multivalued Iterated Function Systems
    Pasupathi, R.
    Chand, A. K. B.
    Navascues, M. A.
    MATHEMATICS AND COMPUTING, ICMC 2022, 2022, 415 : 245 - 256
  • [24] On -Weakly Hyperbolic Iterated Function Systems
    Melo, Italo
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2017, 48 (04): : 717 - 732
  • [25] D/A Converters and Iterated Function Systems
    Toshimichi Saito
    Junya Shimakawa
    Hiroyuki Torikai
    Nonlinear Dynamics, 2006, 44 : 37 - 43
  • [26] Chaotic fuzzy iterated function systems
    Selvy R.
    Kumar P.B.V.
    Journal of Intelligent and Fuzzy Systems, 2024, 46 (04): : 9261 - 9270
  • [27] Cyclic generalized iterated function systems
    Pasupathi, Rajan
    Chand, Arya Kumar Bedabrata
    Navascues, Maria Antonia
    Sebastian, Maria Victoria
    COMPUTATIONAL AND MATHEMATICAL METHODS, 2021, 3 (06)
  • [28] Subdivision schemes for iterated function systems
    Micchelli, CA
    Sauer, T
    Xu, YS
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (06) : 1861 - 1872
  • [29] TEICHMULLER SPACE FOR ITERATED FUNCTION SYSTEMS
    Hille, Martial R.
    Snigireva, Nina
    CONFORMAL GEOMETRY AND DYNAMICS, 2012, 16 : 132 - 160
  • [30] A contractivity condition for iterated function systems
    Carlsson, N
    JOURNAL OF THEORETICAL PROBABILITY, 2002, 15 (03) : 613 - 630