Vortex states and spin textures of rotating spin-orbit-coupled Bose-Einstein condensates in a toroidal trap

被引:46
作者
Wang, Huan [1 ]
Wen, Linghua [1 ]
Yang, Hui [1 ]
Shi, Chunxiao [1 ]
Li, Jinghong [2 ]
机构
[1] Yanshan Univ, Coll Sci, Hebei Key Lab Microstruct Mat Phys, Qinhuangdao 066004, Peoples R China
[2] Yanshan Univ, Coll Environm & Chem Engn, Qinhuangdao 066004, Peoples R China
基金
中国国家自然科学基金;
关键词
Bose-Einstein condensate; spin-orbit coupling; toroidal trap; vortex; spin texture;
D O I
10.1088/1361-6455/aa7afd
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the ground-state properties of Rashba spin-orbit-coupled pseudo-spin-1/2 Bose-Einstein condensates (BECs) in a rotating two-dimensional (2D) toroidal trap. In the absence of spin-orbit coupling (SOC), the increasing rotation frequency enhances the creation of giant vortices for the initially miscible BECs, while it can lead to the formation of semiring density patterns with irregular hidden vortex structures for the initially immiscible BECs. Without rotation, strong 2D isotropic SOC yields a heliciform-stripe phase for the initially immiscible BECs. Combined effects of rotation, SOC, and interatomic interactions on the vortex structures and typical spin textures of the ground state of the system are discussed systematically. In particular, for a fixed rotation frequency above the critical value, the increasing isotropic SOC favors a visible vortex necklace in each component which is accompanied by a hidden giant vortex plus a (several) hidden vortex necklace(s) in the central region. In the case of one-dimensional anisotropic SOC, large SOC strength results in the generation of hidden linear vortex string and the transition from initial component separation (component mixing) to component mixing (component separation). Furthermore, the peculiar spin textures including skyrmion lattice, skyrmion pair and skyrmion string are revealed in this system.
引用
收藏
页数:11
相关论文
共 55 条
[1]   Phase diagrams and Thomas-Fermi estimates for spin-orbit-coupled Bose-Einstein condensates under rotation [J].
Aftalion, Amandine ;
Mason, Peter .
PHYSICAL REVIEW A, 2013, 88 (02)
[2]   PHASE SLIPPAGE WITHOUT VORTEX CORES - VORTEX TEXTURES IN SUPERFLUID HE-3 [J].
ANDERSON, PW ;
TOULOUSE, G .
PHYSICAL REVIEW LETTERS, 1977, 38 (09) :508-511
[3]   Persistent Currents in Spinor Condensates [J].
Beattie, Scott ;
Moulder, Stuart ;
Fletcher, Richard J. ;
Hadzibabic, Zoran .
PHYSICAL REVIEW LETTERS, 2013, 110 (02)
[4]   Spin-Injection Spectroscopy of a Spin-Orbit Coupled Fermi Gas [J].
Cheuk, Lawrence W. ;
Sommer, Ariel T. ;
Hadzibabic, Zoran ;
Yefsah, Tarik ;
Bakr, Waseem S. ;
Zwierlein, Martin W. .
PHYSICAL REVIEW LETTERS, 2012, 109 (09)
[5]   Quench-Induced Supercurrents in an Annular Bose Gas [J].
Corman, L. ;
Chomaz, L. ;
Bienaime, T. ;
Desbuquois, R. ;
Weitenberg, C. ;
Nascimbene, S. ;
Dalibard, J. ;
Beugnon, J. .
PHYSICAL REVIEW LETTERS, 2014, 113 (13)
[6]   Vortex signatures in annular Bose-Einstein condensates [J].
Cozzini, M ;
Jackson, B ;
Stringari, S .
PHYSICAL REVIEW A, 2006, 73 (01)
[7]   Colloquium: Artificial gauge potentials for neutral atoms [J].
Dalibard, Jean ;
Gerbier, Fabrice ;
Juzeliunas, Gediminas ;
Oehberg, Patrik .
REVIEWS OF MODERN PHYSICS, 2011, 83 (04) :1523-1543
[8]   Hysteresis in a quantized superfluid 'atomtronic' circuit [J].
Eckel, Stephen ;
Lee, Jeffrey G. ;
Jendrzejewski, Fred ;
Murray, Noel ;
Clark, Charles W. ;
Lobb, Christopher J. ;
Phillips, William D. ;
Edwards, Mark ;
Campbell, Gretchen K. .
NATURE, 2014, 506 (7487) :200-+
[9]   Vortex dynamics in spin-orbit-coupled Bose-Einstein condensates [J].
Fetter, Alexander L. .
PHYSICAL REVIEW A, 2014, 89 (02)
[10]   Rotating trapped Bose-Einstein condensates [J].
Fetter, Alexander L. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (02) :647-691