Electrochemical sensor based on 1,8-dihydroxyanthraquinone adsorbed on a glassy carbon electrode for the detection of [Cu(CN)3](aq) 2? in alkaline cyanide copper plating baths waste

被引:12
作者
Cardenas-Riojas, Andy A. [1 ]
Cornejo-Herrera, Anthony Felix [1 ]
Muedas-Taipe, Golfer [1 ]
La Rosa-Toro, Adolfo [1 ]
Sotomayor, Maria D. P. T. [2 ,3 ]
Ponce-Vargas, Miguel [4 ]
Baena-Moncada, Angelica M. [1 ]
机构
[1] Univ Nacl Ingn, Lab Invest Electroquim Aplicada, Fac Ciencias, Av Tupac Amaru 210, Lima 210, Peru
[2] State Univ Sao Paulo UNESP, Inst Chem, Dept Analyt Chem, BR-14801970 Araraquara, SP, Brazil
[3] Natl Inst Alternat Technol Detect Toxicol Evaluat, Araraquara, SP, Brazil
[4] Univ Reims, Inst Chim Mol Reims, UMR CNRS 7312, F-51687 Reims, France
关键词
Electrochemical sensor; Glassy carbon; Adsorption; 1; 8-dihydroxyanthraquinone; Cu(CN)3](aq); 2;
D O I
10.1016/j.jelechem.2020.114909
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
This work reports the fabrication of a novel electrochemical sensor for the detection of the complex ion [Cu(CN)3](aq) 2? , one of the main components of the effluents from cyanide alkaline copper plating baths. This sensor was prepared by using a surface modified glassy carbon (GC) electrode with 1,8-dihydroxyantroquinone (1,8-DHAQ). It was characterized by electrochemical impedance, Raman spectroscopy and UV?Visible spectroscopy. The electrochemical detection of [Cu(CN)3](aq) 2? was performed by differential pulse voltammetry. The 1,8-DHAQ/GC electrochemical sensor exhibits good reproducibility and a linear range of 5.50 ? 10?7?3.81 ? 10?6 mol L?1, with a detection limit (LOD) of 1.20 ? 10?6 mol L?1, quantification limit (LOQ) of 3.97 ? 10?6 mol L?1, and robustness to interfering Cl?, NO3?, SO? ? y CO32? ions. Finally, a DFT approach suggests an almost parallel orientation of the bis(1,8dihydroxyanthraquinone) over a graphene domain of the glassy carbon surface, as well as the noncovalent nature of the interactions involved.
引用
收藏
页数:8
相关论文
共 51 条
[1]   Investigation of complexation and solubility equilibria in the copper(I)/cyanide system at 25 °C [J].
Akilan, Chandrika ;
Koenigsberger, Erich ;
Solis, Jose S. ;
May, Peter M. ;
Kyle, James H. ;
Hefter, Glenn .
HYDROMETALLURGY, 2016, 164 :202-207
[2]   Copper removal from cyanide solutions by acidification [J].
Alonso-Gonzalez, O. ;
Nava-Alonso, F. ;
Uribe-Salas, A. .
MINERALS ENGINEERING, 2009, 22 (04) :324-329
[3]  
Babula P, 2012, INT J ELECTROCHEM SC, V7, P7349
[4]   PREPARATION AND CHARACTERIZATION OF SURFACE MODIFIED ELECTRODES FROM HYDROXYANTHRAQUINONES [J].
BAILEY, SI ;
RITCHIE, IM ;
SEARCY, N ;
SINGH, P .
JOURNAL OF APPLIED ELECTROCHEMISTRY, 1988, 18 (03) :368-373
[5]  
Bard A.J., 2001, Electrochemical Methods Fundamentals And Applications, V2
[6]   Voltammetric Characterization of DNA Intercalators across the Full pH Range: Anthraquinone-2,6-disulfonate and Anthraquinone-2-sulfonate [J].
Batchelor-McAuley, Christopher ;
Li, Qian ;
Dapin, Sophie M. ;
Compton, Richard G. .
JOURNAL OF PHYSICAL CHEMISTRY B, 2010, 114 (11) :4094-4100
[7]   Development of a new electrochemical sensor based on silver sulfide nanoparticles and hierarchical porous carbon modified carbon paste electrode for determination of cyanide in river water samples [J].
Cardenas Riojas, Andy A. ;
Wong, Ademar ;
Planes, Gabriel A. ;
Sotomayor, Maria D. P. T. ;
La Rosa-Toro, Adolfo ;
Baena-Moncada, Angelica M. .
SENSORS AND ACTUATORS B-CHEMICAL, 2019, 287 :544-550
[8]   The electrochemical oxidation of alkaline copper cyanide solutions [J].
Cheng, SC ;
Gattrell, M ;
Guena, T ;
MacDougall, B .
ELECTROCHIMICA ACTA, 2002, 47 (20) :3245-3256
[9]   Solid Forms, Crystal Habits, and Solubility of Danthron [J].
Cheuk, Dominic ;
Khamar, Dikshitkumar ;
McArdle, Patrick ;
Rasmuson, Ake C. .
JOURNAL OF CHEMICAL AND ENGINEERING DATA, 2015, 60 (07) :2110-2118
[10]  
Cruz VR, 2002, J APPL ELECTROCHEM, V32, P473