Operational strategy to stabilize lithium metal anodes by applied thermal gradient

被引:19
作者
Atkinson, Robert W., III [1 ]
Carter, Rachel [2 ]
Love, Corey T. [3 ]
机构
[1] EXCET Inc, Springfield, VA 22151 USA
[2] US Naval Res Lab, Natl Res Council, Postdoctoral Program, Washington, DC 20375 USA
[3] US Naval Res Lab, Chem Div, Washington, DC 20375 USA
关键词
CYCLE LIFE; ELECTROLYTE; INTERFACE; ION; BEHAVIOR; SOLVENT; ISSUES; SALT;
D O I
10.1016/j.ensm.2019.07.021
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
External thermal gradients have a profound impact on lithium metal battery plating and stripping stability, potentially providing a path to safe, rechargeable, lithium metal batteries. The direction of the thermal gradient for the first Li plating determines whether the cell is stable and capable of high-rate, high-capacity plating/stripping or is instead unstable and vulnerable to internal shorting. Symmetric lithium metal batteries with a negative thermal gradient (0 degrees C negative electrode, 40 degrees C positive electrode) reproduce conditions known to result in high-aspect ratio plating deposits and high surface non-uniformity for the first Li plating. Non-uniform deposition increases unfavorable side reactions between freshly plated Li and the electrolyte that increases interfacial resistance, reduces ionic conductivity due to electrolyte consumption, and forms a mass transport-limiting layer of electrochemically inactive lithium at the electrode surface-similar to observations for isothermal 0 degrees C and 20 degrees C control cases. Alternatively, a positive thermal gradient (40 degrees C negative electrode, 0 degrees C positive electrode) forms a uniform initial electrodeposit that predisposes the cell to stable, long-term cycling. A positive thermal gradient reduces detrimental electrode-electrolyte reactions, reduces electrochemically inactive lithium formation, and maintains a low tortuosity diffusion pathway for higher effective ionic conductivity and lower interfacial resistances. A positive thermal gradient reduces cell voltage hysteresis by up to 39% compared to isothermal 20 degrees C control at a broad range of current densities and capacities (up to 5.0 mA cm(-2) and 10 mAh cm(-2)), dramatically enhancing high-rate cycling and demonstrating promise for a positive thermal gradient as an operational strategy to enable faster charging for batteries with lithium metal anodes.
引用
收藏
页码:18 / 28
页数:11
相关论文
共 55 条
[1]  
[Anonymous], BATTERIES
[2]   A short review of failure mechanisms of lithium metal and lithiated graphite anodes in liquid electrolyte solutions [J].
Aurbach, D ;
Zinigrad, E ;
Cohen, Y ;
Teller, H .
SOLID STATE IONICS, 2002, 148 (3-4) :405-416
[3]   Factors which limit the cycle life of rechargeable lithium (metal) batteries [J].
Aurbach, D ;
Zinigrad, E ;
Teller, H ;
Dan, P .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2000, 147 (04) :1274-1279
[4]   A Critical Review of Thermal Issues in Lithium-Ion Batteries [J].
Bandhauer, Todd M. ;
Garimella, Srinivas ;
Fuller, Thomas F. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2011, 158 (03) :R1-R25
[5]   Li+ cation environment, transport, and mechanical properties of the LiTFSI doped N-methyl-N-alkylpyrrolidinium +TFSI- ionic liquids [J].
Borodin, Oleg ;
Smith, Grant D. ;
Henderson, Wesley .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (34) :16879-16886
[6]   Modulation of Lithium Plating in Li-Ion Batteries with External Thermal Gradient [J].
Carter, Rachel ;
Love, Corey T. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (31) :26328-26334
[7]   Dead lithium: mass transport effects on voltage, capacity, and failure of lithium metal anodes [J].
Chen, Kuan-Hung ;
Wood, Kevin N. ;
Kazyak, Eric ;
LePage, William S. ;
Davis, Andrew L. ;
Sanchez, Adrian J. ;
Dasgupta, Neil P. .
JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (23) :11671-11681
[8]   High-Voltage Lithium-Metal Batteries Enabled by Localized High-Concentration Electrolytes [J].
Chen, Shuru ;
Zheng, Jianming ;
Mei, Donghai ;
Han, Kee Sung ;
Engelhard, Mark H. ;
Zhao, Wengao ;
Xu, Wu ;
Liu, Jun ;
Zhang, Ji-Guang .
ADVANCED MATERIALS, 2018, 30 (21)
[9]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[10]   The gap between long lifespan Li-S coin and pouch cells: The importance of lithium metal anode protection [J].
Cheng, Xin-Bing ;
Yan, Chong ;
Huang, Jia-Qi ;
Li, Peng ;
Zhu, Lin ;
Zhao, Lida ;
Zhang, Yingying ;
Zhu, Wancheng ;
Yang, Shu-Ting ;
Zhang, Qiang .
ENERGY STORAGE MATERIALS, 2017, 6 :18-25