Glutamate suppresses osteoclastogenesis through the cystine/glutamate antiporter

被引:36
作者
Hinoi, Eiichi [1 ]
Takarada, Takeshi [1 ]
Uno, Kyosuke [1 ]
Inoue, Maki [1 ]
Murafuji, Yasuhiro [1 ]
Yoneda, Yukio [1 ]
机构
[1] Kanazawa Univ, Grad Sch Nat Sci & Technol, Div Pharmaceut Sci, Lab Mol Pharmacol, Kanazawa, Ishikawa 9201192, Japan
关键词
D O I
10.2353/ajpath.2007.061039
中图分类号
R36 [病理学];
学科分类号
100104 ;
摘要
Previous studies have demonstrated functional expression of different glutamate receptor subtypes (GluRs) in both osteoblasts and osteoclasts. in the present study, we investigated the possible functional expression by osteoclasts of different glutamatergic signaling machineries including GluRs. In disagreement with the aforementioned prevailing view, no mRNA expression was found for all GluRs examined in primary cultured mouse osteoclasts differentiated from bone marrow precursors. Constitutive expression of mRNA was seen with glutamate transporters, such as excitatory amino acid transporters and cystine/glutamate antiporter, in primary osteoclasts. Glutamate significantly inhibited osteoclastogenesis at a concentration over 500 mu mol/L in both primary osteoclasts and preosteoclastic RAW264.7 cells without affecting the cell viability in a manner sensitive to the antiporter inhibitor. in RAW264.7 cells stably overexpressing the cystine/glutamate antiporter, the inhibition by glutamate was more conspicuous than in cells transfected with empty vector alone. The systemic administration of glutamate significantly prevented the decreased bone mineral density in both femur and tibia in addition to increased osteoclastic indices in ovariectomized mice in vivo. These results suggest that glutamate may play a pivotal role in mechanisms associated with osteoclastogenesis through the cystine/glutamate antiporter functionally expressed by osteoclasts devoid of any GluRs cloned to date.
引用
收藏
页码:1277 / 1290
页数:14
相关论文
共 48 条
[1]   Tumor necrosis factor-α activation of nuclear transcription factor-κB in marrow macrophages is mediated by c-Src tyrosine phosphorylatiola of IκBα [J].
Abu-Amer, Y ;
Ross, FP ;
McHugh, KP ;
Livolsi, A ;
Peyron, JF ;
Teitelbaum, SL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1998, 273 (45) :29417-29423
[2]   Generation of CD1(+)RelB(+) dendritic cells and tartrate-resistant acid phosphatase-positive osteoclast-like multinucleated giant cells from human monocytes [J].
Akagawa, KS ;
Takasuka, N ;
Nozaki, Y ;
Komuro, I ;
Azuma, M ;
Ueda, M ;
Naito, M ;
Takahashi, K .
BLOOD, 1996, 88 (10) :4029-4039
[3]   Molecular and functional analysis of a novel neuronal vesicular glutamate transporter [J].
Bai, LQ ;
Xu, H ;
Collins, JF ;
Ghishan, FK .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2001, 276 (39) :36764-36769
[4]  
BANNAI S, 1986, J BIOL CHEM, V261, P2256
[5]   STIMULATION OF OSTEOCLASTIC BONE-RESORPTION BY HYDROGEN-PEROXIDE [J].
BAX, BE ;
ALAM, ASMT ;
BANERJI, B ;
BAX, CMR ;
BEVIS, PJR ;
STEVENS, CR ;
MOONGA, BS ;
BLAKE, DR ;
ZAIDI, M .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 1992, 183 (03) :1153-1158
[6]   Uptake of glutamate into synaptic vesicles by an inorganic phosphate transporter [J].
Bellocchio, EE ;
Reimer, RJ ;
Fremeau, RT ;
Edwards, RH .
SCIENCE, 2000, 289 (5481) :957-960
[7]   Characterization of cystine uptake in cultured astrocytes [J].
Bender, AS ;
Reichelt, W ;
Norenberg, MD .
NEUROCHEMISTRY INTERNATIONAL, 2000, 37 (2-3) :269-276
[8]   Osteoclast differentiation and activation [J].
Boyle, WJ ;
Simonet, WS ;
Lacey, DL .
NATURE, 2003, 423 (6937) :337-342
[9]   A NONINDUCIBLE CYSTINE TRANSPORT-SYSTEM IN RAT ALVEOLAR TYPE-II CELLS [J].
BUKOWSKI, DM ;
DENEKE, SM ;
LAWRENCE, RA ;
JENKINSON, SG .
AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 1995, 268 (01) :L21-L26
[10]   Glutamate receptors are expressed by bone cells and are involved in bone resorption [J].
Chenu, C ;
Serre, CM ;
Raynal, C ;
Burt-Pichat, B ;
Delmas, PD .
BONE, 1998, 22 (04) :295-299