Fault Diagnosis of Electro-mechanical Actuator Based on Deep Learning Network

被引:0
|
作者
Yang, Ning [1 ]
Shen, Jingshi [1 ]
Jia, Yun [1 ]
Zhang, Jiande [1 ]
机构
[1] Shandong Inst Space Elect Technol, Yantai 264670, Peoples R China
来源
PROCEEDINGS OF THE 39TH CHINESE CONTROL CONFERENCE | 2020年
关键词
Electro-mechanical actuator; Fault diagnosis; Deep learning; Denoising autoencoders;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
An efficient and accurate fault diagnosis method based on deep learning network is proposed to solve the problems in the traditional fault diagnosis methods of electro-mechanical actuator (EMA). In this method, several denoising autoencoders are stacked to generate a neural network with multiple hidden layers, in which fault features are automatically extracted from original signals, getting rid of the dependence on signal processing technologies and diagnostic experiences. The greedy algorithm is adopted to carry out the pre-training of network to avoid problems of local extremum and gradient diffusion. Then, the back propagation (BP) algorithm is used to fine tune the whole network, in which the weights and biases of each layer are corrected to minimize the classification errors. The experiment results show that the fault diagnosis accuracy of the method in this paper can reach 100% with appropriate parameters, which can realize the accurate fault diagnosis of EMA.
引用
收藏
页码:4002 / 4006
页数:5
相关论文
共 50 条
  • [41] Motor Bearing Fault Diagnosis Based on Deep Learning
    Zhang, Wei
    Hu, Yong
    Zeng, Deliang
    Luo, Wei
    Li, Gengda
    Liu, Miao
    2019 20TH IEEE/ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING AND PARALLEL/DISTRIBUTED COMPUTING (SNPD), 2019, : 8 - 14
  • [42] Analog Circuit Fault Diagnosis Based on Deep Learning
    Zhao, Dezan
    Xing, Jun
    Wang, Zhisen
    Proceedings of the 2016 4th International Conference on Mechanical Materials and Manufacturing Engineering (MMME 2016), 2016, 79 : 254 - 256
  • [43] Fault diagnosis of motor bearing based on deep learning
    Jian, Yifan
    Qing, Xianguo
    He, Liang
    Zhao, Yang
    Qi, Xiao
    Du, Ming
    ADVANCES IN MECHANICAL ENGINEERING, 2019, 11 (09)
  • [44] Deep Learning-Based Composite Fault Diagnosis
    An, Zining
    Wu, Fan
    Zhang, Cong
    Ma, Jinhao
    Sun, Bo
    Tang, Bihua
    Liu, Yuanan
    IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, 2023, 13 (02) : 572 - 581
  • [45] Design of the aeroload simulator for the test of a small sized electro-mechanical actuator
    Chun, Tae-Young
    Hur, Gyee-Young
    Choi, Kwang-Jin
    Woo, Hyun-Wook
    2007 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS, VOLS 1-6, 2007, : 258 - +
  • [46] Analysis and design of a Linear Electro-Mechanical Actuator for a High Lift System
    Castellini, L.
    D'Andrea, M.
    Borgarelli, N.
    2014 INTERNATIONAL SYMPOSIUM ON POWER ELECTRONICS, ELECTRICAL DRIVES, AUTOMATION AND MOTION (SPEEDAM), 2014, : 243 - 247
  • [47] A review on adversarial-based deep transfer learning mechanical fault diagnosis
    Guo, Yu
    Cheng, Ziyi
    Zhang, Jundong
    Sun, Bin
    Wang, YongKang
    JOURNAL OF BIG DATA, 2024, 11 (01)
  • [48] High performance control method of electro-mechanical actuator based on active disturbance rejection control
    Shi, Zhaoyao
    Zhang, Pan
    Lin, Jiachun
    ADVANCES IN MECHANICAL ENGINEERING, 2022, 14 (07)
  • [49] Intelligent fault diagnosis of rolling bearing based on a deep transfer learning network
    Wu, Zhenghong
    Jiang, Hongkai
    Zhang, Sicheng
    Wang, Xin
    Shao, Haidong
    Dou, Haoxuan
    2023 IEEE INTERNATIONAL CONFERENCE ON PROGNOSTICS AND HEALTH MANAGEMENT, ICPHM, 2023, : 105 - 111
  • [50] Fault Diagnosis and Positioning for Communication Network in Intelligent Substation Based on Deep Learning
    Sun Y.
    Cai Z.
    Guo C.
    Ma G.
    Dai G.
    Dianwang Jishu/Power System Technology, 2019, 43 (12): : 4306 - 4313