Geometric phase and quantum phase transition in the one-dimensional compass model

被引:16
|
作者
Wang, L. C. [1 ]
Yi, X. X. [1 ]
机构
[1] Dalian Univ Technol, Sch Phys & Optoelect Technol, Dalian 116024, Peoples R China
来源
EUROPEAN PHYSICAL JOURNAL D | 2010年 / 57卷 / 02期
基金
中国国家自然科学基金;
关键词
KINEMATIC APPROACH; ARRAYS;
D O I
10.1140/epjd/e2010-00045-4
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study the geometric phase of the ground state of the one-dimensional compass model in a transverse field. The critical properties of the system in terms of the geometric phase are calculated and discussed. The results show that the general character of quantum phase transitions (QPTs) in the model can be revealed by the Berry phase of the ground state. This study extends the relations between geometric phases and QPTs.
引用
收藏
页码:281 / 286
页数:6
相关论文
共 50 条
  • [21] A ONE-DIMENSIONAL MODEL WITH PHASE-TRANSITION
    HOGLUND, T
    JOURNAL OF STATISTICAL PHYSICS, 1988, 53 (3-4) : 825 - 834
  • [22] A ONE-DIMENSIONAL MODEL WITH PHASE-TRANSITION
    FRANCE, MM
    TENENBAUM, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1993, 154 (03) : 603 - 611
  • [23] A one-dimensional phase transition constitutive model
    Wang, WQ
    Tang, ZP
    SHOCK COMPRESSION OF CONDENSED MATTER-1999, PTS 1 AND 2, 2000, 505 : 347 - 350
  • [24] One-Dimensional Classical Model with Phase Transition
    I. K. Loktionov
    High Temperature, 2001, 39 : 325 - 328
  • [25] Quantum phase transition in the quantum compass model
    Chen, Han-Dong
    Fang, Chen
    Hu, Jiangping
    Yao, Hong
    PHYSICAL REVIEW B, 2007, 75 (14):
  • [26] Quantum Phase Transition in the One-Dimensional Water Chain
    Serwatka, T.
    Melko, R. G.
    Burkov, A.
    Roy, P. -N.
    PHYSICAL REVIEW LETTERS, 2023, 130 (02)
  • [27] ONE-DIMENSIONAL PHASE TRANSITION
    STRECKER, JL
    JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (08) : 1541 - &
  • [28] Unveiling π-tangle and quantum phase transition in the one-dimensional anisotropic XY model
    Liu, Cheng-Cheng
    Xu, Shuai
    He, Juan
    Ye, Liu
    QUANTUM INFORMATION PROCESSING, 2015, 14 (06) : 2013 - 2024
  • [29] Quantum phase transition in the one-dimensional extended Peierls-Hubbard model
    Benthien, H
    Essler, FHL
    Grage, A
    PHYSICAL REVIEW B, 2006, 73 (08)
  • [30] The monogamy relation and quantum phase transition in one-dimensional anisotropic XXZ model
    Song, Xue-ke
    Wu, Tao
    Ye, Liu
    QUANTUM INFORMATION PROCESSING, 2013, 12 (10) : 3305 - 3317