Global convergence for a 1-D inverse problem with application to imaging of land mines

被引:14
作者
Kuzhuget, Andrey V. [1 ]
Klibanov, Michael V. [1 ]
机构
[1] Univ N Carolina, Dept Math & Stat, Charlotte, NC 28223 USA
关键词
inverse problems; globally convergent method; quasi-reversibility method; Carleman estimate; QUASI-REVERSIBILITY METHOD; THERMOACOUSTIC TOMOGRAPHY; CAUCHY-PROBLEM; SOLVE;
D O I
10.1080/00036810903481166
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A new globally convergent numerical method is developed for a 1-D coefficient inverse problem for a hyperbolic partial differential equation (PDE). The back reflected data are used. A version of the quasi-reversibility method is proposed. A global convergence theorem is proven via a Carleman estimate. The results of numerical experiments are presented.
引用
收藏
页码:125 / 157
页数:33
相关论文
共 19 条
[1]  
[Anonymous], 2000, MATH ITS APPL
[2]  
[Anonymous], 1977, Solution of illposed problems
[3]  
BEILINA L, 2009, GLOBALLY CONVERGEN 2
[4]  
BEILINA L, 2009, SYNTHESIS GLOBAL CON
[5]  
BEILINA L, 2009, GLOBALLY CONVERGEN 1
[6]   A GLOBALLY CONVERGENT NUMERICAL METHOD FOR A COEFFICIENT INVERSE PROBLEM [J].
Beilina, Larisa ;
Klibanov, Michael V. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 31 (01) :478-509
[7]   Convergence rates for the quasi-reversibility method to solve the Cauchy problem for Laplace's equation [J].
Bourgeois, L .
INVERSE PROBLEMS, 2006, 22 (02) :413-430
[8]   A mixed formulation of quasi-reversibility to solve the Cauchy problem for Laplace's equation [J].
Bourgeois, L .
INVERSE PROBLEMS, 2005, 21 (03) :1087-1104
[9]   INVERSE PROBLEMS FOR A PERTURBED DISSIPATIVE HALF-SPACE [J].
CHENEY, M ;
ISAACSON, D .
INVERSE PROBLEMS, 1995, 11 (04) :865-888
[10]   The quasi-reversibility method for thermoacoustic tomography in a heterogeneous medium [J].
Clason, Christian ;
Klibanov, Michael V. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2007, 30 (01) :1-23