Active recombinant Tol2 transposase for gene transfer and gene discovery applications

被引:20
作者
Ni, Jun [1 ,2 ]
Wangensteen, Kirk J. [3 ,4 ]
Nelsen, David [3 ]
Balciunas, Darius [3 ,5 ]
Skuster, Kimberly J. [1 ]
Urban, Mark D. [1 ]
Ekker, Stephen C. [1 ]
机构
[1] Mayo Clin, Dept Biochem & Mol Biol, 200 1st St SW,1342C Guggenheim, Rochester, MN 55905 USA
[2] Stanford Univ, Sch Med, Dept Chem & Syst Biol, Stanford, CA 94305 USA
[3] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN 55455 USA
[4] Univ Penn, 9 Penn Tower,3400 Spruce ST, Philadelphia, PA 19104 USA
[5] Temple Univ, Dept Biol, Philadelphia, PA 19122 USA
来源
MOBILE DNA | 2016年 / 7卷
基金
美国国家卫生研究院;
关键词
Tol2; transposase; hAT superfamily; Recombinant transposase protein; Zebrafish; Transposition site preference; TARGET SITE SELECTION; SLEEPING-BEAUTY; MEDAKA FISH; HUMAN-CELLS; T-CELLS; IN-VIVO; ZEBRAFISH; ELEMENT; PIGGYBAC; IDENTIFICATION;
D O I
10.1186/s13100-016-0062-z
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: The revolutionary concept of "jumping genes" was conceived by McClintock in the late 1940s while studying the Activator/Dissociation (Ac/Ds) system in maize. Transposable elements (TEs) represent the most abundant component of many eukaryotic genomes. Mobile elements are a driving force of eukaryotic genome evolution. McClintock's Ac, the autonomous element of the Ac/Ds system, together with hobo from Drosophila and Tam3 from snapdragon define an ancient and diverse DNA transposon superfamily named hAT. Other members of the hAT superfamily include the insect element Hermes and Tol2 from medaka. In recent years, genetic tools derived from the 'cut' and 'paste' Tol2 DNA transposon have been widely used for genomic manipulation in zebrafish, mammals and in cells in vitro. Results: We report the purification of a functional recombinant Tol2 protein from E. coli. We demonstrate here that following microinjection using a zebrafish embryo test system, purified Tol2 transposase protein readily catalyzes gene transfer in both somatic and germline tissues in vivo. We show that purified Tol2 transposase can promote both in vitro cutting and pasting in a defined system lacking other cellular factors. Notably, our analysis of Tol2 transposition in vitro reveals that the target site preference observed for Tol2 in complex host genomes is maintained using a simpler target plasmid test system, indicating that the primary sequence might encode intrinsic cues for transposon integration. Conclusions: This active Tol2 protein is an important new tool for diverse applications including gene discovery and molecular medicine, as well as for the biochemical analysis of transposition and regulation of hAT transposon/genome interactions. The measurable but comparatively modest insertion site selection bias noted for Tol2 is largely determined by the primary sequence encoded in the target sequence as assessed through studying Tol2 protein-mediated transposition in a cell-free system.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Noninvasive Repetitive Imaging of Somatostatin Receptor 2 Gene Transfer with Positron Emission Tomography
    Cotugno, Gabriella
    Aurilio, Michela
    Annunziata, Patrizia
    Capalbo, Anita
    Faella, Armida
    Rinaldi, Valentina
    Strisciuglio, Caterina
    Di Tommaso, Maurizio
    Aloj, Luigi
    Auricchio, Alberto
    HUMAN GENE THERAPY, 2011, 22 (02) : 189 - 196
  • [42] Gene transfer to skeletal muscle using hydrodynamic limb vein injection: current applications, hurdles and possible optimizations
    Le Guen, Yann Thierry
    Le Gall, Tony
    Midoux, Patrick
    Guegan, Philippe
    Braun, Serge
    Montier, Tristan
    JOURNAL OF GENE MEDICINE, 2020, 22 (02)
  • [43] Enhancement of flap survival and changes in angiogenic gene expression after AAV2-mediated VEGF gene transfer to rat ischemic flaps
    Wang, Xiao Tian
    Avanessian, Bella
    Ma, Qiangzhong
    Durfee, Heather
    Tang, Yu Qing
    Liu, Paul Y.
    WOUND REPAIR AND REGENERATION, 2011, 19 (04) : 498 - 504
  • [44] Restriction Factors Against Recombinant Adeno-associated Virus Vector-mediated Gene Transfer in Dystrophin-deficient Muscles
    Dupont, Jean-Baptiste
    CURRENT GENE THERAPY, 2016, 16 (03) : 168 - 183
  • [45] Impact of deletion of envelope-related genes of recombinant Sendai viruses on immune responses following pulmonary gene transfer of neonatal mice
    Tanaka, S.
    Yonemitsu, Y.
    Yoshida, K.
    Okano, S.
    Kondo, H.
    Inoue, M.
    Hasegawa, M.
    Masumoto, K.
    Suita, S.
    Taguchi, T.
    Sueishi, K.
    GENE THERAPY, 2007, 14 (13) : 1017 - 1028
  • [46] Comparison of F13A1 gene mutations in 73 patients treated with recombinant FXIII-A2
    Ivaskevicius, V.
    Biswas, A.
    Garly, M. -L.
    Oldenburg, J.
    HAEMOPHILIA, 2017, 23 (03) : E194 - E203
  • [47] Fusion of Anthopleurin-B to AAV2 increases specificity of cardiac gene transfer
    Finet, J. Emanuel
    Wan, Xiaoping
    Donahue, J. Kevin
    VIROLOGY, 2018, 513 : 43 - 51
  • [48] Development of a Model of Elevated Intraocular Pressure in Rats by Gene Transfer of Bone Morphogenetic Protein 2
    Buie, LaKisha K.
    Karim, Md. Zahidul
    Smith, Matthew H.
    Borras, Teresa
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2013, 54 (08) : 5441 - 5455
  • [49] Sequencing the CYP2D6 gene: from variant allele discovery to clinical pharmacogenetic testing
    Yang, Yao
    Botton, Mariana R.
    Scott, Erick R.
    Scott, Stuart A.
    PHARMACOGENOMICS, 2017, 18 (07) : 673 - 685
  • [50] In Vivo Evaluation of a New Recombinant Hyaluronidase to Improve Gene Electro-Transfer Protocols for DNA-Based Drug Delivery against Cancer
    De Robertis, Mariangela
    Pasquet, Lise
    Loiacono, Luisa
    Bellard, Elisabeth
    Messina, Luciano
    Vaccaro, Susanna
    Di Pasquale, Roberta
    Fazio, Vito Michele
    Rols, Marie-Pierre
    Teissie, Justin
    Golzio, Muriel
    Signori, Emanuela
    CANCERS, 2018, 10 (11)