Tolerancing the alignment of large-core optical fibers, fiber bundles and light guides using a Fourier approach

被引:0
作者
Sawyer, Travis W. [1 ,2 ]
Petersburg, Ryan [3 ]
Bohndiek, Sarah E. [1 ,2 ]
机构
[1] Univ Cambridge, Dept Phys, Cambridge, England
[2] Univ Cambridge, Canc Res UK Cambridge Inst, Cambridge, England
[3] Yale Univ, Dept Phys, New Haven, CT 06511 USA
基金
美国国家科学基金会;
关键词
ENDOSCOPE; WAVE;
D O I
10.1364/AO.56.003303
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Optical fiber technology is found in a wide variety of applications to flexibly relay light between two points, enabling information transfer across long distances and allowing access to hard-to-reach areas. Large-core optical fibers and light guides find frequent use in illumination and spectroscopic applications, for example, endoscopy and high-resolution astronomical spectroscopy. Proper alignment is critical for maximizing throughput in optical fiber coupling systems; however, there currently are no formal approaches to tolerancing the alignment of a light-guide coupling system. Here, we propose a Fourier alignment sensitivity (FAS) algorithm to determine the optimal tolerances on the alignment of a light guide by computing the alignment sensitivity. The algorithm shows excellent agreement with both simulated and experimentally measured values and improves on the computation time of equivalent ray-tracing simulations by two orders of magnitude. We then apply FAS to tolerance and fabricate a coupling system, which is shown to meet specifications, thus validating FAS as a tolerancing technique. These results indicate that FAS is a flexible and rapid means to quantify the alignment sensitivity of a light guide, widely informing the design and tolerancing of coupling systems. (C) 2017 Optical Society of America
引用
收藏
页码:3303 / 3310
页数:8
相关论文
共 28 条
  • [1] CAFE: Calar Alto Fiber-fed Echelle spectrograph
    Aceituno, J.
    Sanchez, S. F.
    Grupp, F.
    Lillo, J.
    Hernan-Obispo, M.
    Benitez, D.
    Montoya, L. M.
    Thiele, U.
    Pedraz, S.
    Barrado, D.
    Dreizler, S.
    Bean, J.
    [J]. ASTRONOMY & ASTROPHYSICS, 2013, 552
  • [2] The PolyScope: A Modular Design, Semidisposable Flexible Ureterorenoscope System
    Bader, Markus Juergen
    Gratzke, Christian
    Walther, Sebastian
    Schlenker, Boris
    Tilki, Derya
    Hocaoglu, Yasemin
    Sroka, Ronald
    Stief, Christian Georg
    Reich, Oliver
    [J]. JOURNAL OF ENDOUROLOGY, 2010, 24 (07) : 1061 - 1066
  • [3] Fundamental-mode fiber-to-fiber coupling at high-power
    Blomqvist, Mats
    Palsson, Magnus
    Blomster, Ola
    Manneberg, Goran
    [J]. SOLID STATE LASERS XVIII: TECHNOLOGY AND DEVICES, 2009, 7193
  • [4] Bourn C. T., 2001, U. S. patent, Patent No. [6,290,382, 6290382]
  • [5] FAST FOURIER-TRANSFORMS - A TUTORIAL REVIEW AND A STATE-OF-THE-ART
    DUHAMEL, P
    VETTERLI, M
    [J]. SIGNAL PROCESSING, 1990, 19 (04) : 259 - 299
  • [6] Fiber-optic fluorescence imaging
    Flusberg, BA
    Cocker, ED
    Piyawattanametha, W
    Jung, JC
    Cheung, ELM
    Schnitzer, MJ
    [J]. NATURE METHODS, 2005, 2 (12) : 941 - 950
  • [7] Optimization of freeform lightpipes for light-emitting-diode projectors
    Fournier, Florian
    Rolland, Jannick
    [J]. APPLIED OPTICS, 2008, 47 (07) : 957 - 966
  • [8] Hamam H., 2007, HDB COMPUTER NETWORK, V1, P692
  • [9] Ishibashi K., 1981, U. S. patent, Patent No. 4272156
  • [10] Ytterbium-doped large-core fiber laser with 1.36 kW continuous-wave output power
    Jeong, Y
    Sahu, JK
    Payne, DN
    Nilsson, J
    [J]. OPTICS EXPRESS, 2004, 12 (25): : 6088 - 6092