Sputtered Hf-Ti nanostructures: A segregation and high-temperature stability study

被引:34
|
作者
Polyakov, Mikhail N. [1 ]
Chookajorn, Tongjai [2 ,3 ]
Mecklenburg, Matthew [4 ]
Schuh, Christopher A. [2 ]
Hodge, Andrea M. [1 ,5 ]
机构
[1] Univ So Calif, Dept Aerosp & Mech Engn, Los Angeles, CA 90089 USA
[2] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[3] NSTDA, Natl Met & Mat Technol Ctr MTEC, Pathum Thani 12120, Thailand
[4] Univ So Calif, Ctr Electron Microscopy & Microanal, Los Angeles, CA 90089 USA
[5] Univ So Calif, Dept Chem Engn & Mat Sci, 3650 McClintock Ave, Los Angeles, CA 90089 USA
关键词
Multilayers; Sputter deposition; Nanostructured metals; Thermodynamic stability; Monte Carlo simulation; SELF-DIFFUSION; BOUNDARY DIFFUSION; THERMAL-STABILITY; GRAIN-GROWTH; METALS; ENERGY; BULK; SIZE;
D O I
10.1016/j.actamat.2016.01.073
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
High-temperature stability and segregation tendency of a Hf-Ti alloy is investigated using specimens sputtered in monolithic and multilayer configurations. Upon annealing at 800 degrees C for 96 h, the alloy shows segregation of Hf and Ti at the nanoscale even though the bulk Hf-Ti phase diagram predicts a homogeneous solid solution. The length scale of segregation is found to depend upon the initial as deposited structure, with the monolithic film showing Ti segregation at grain boundaries, and the multilayered specimens showing a nanostructure of Hf-rich grains and Ti-rich intergranular amorphous regions. The multilayer specimens exhibit similar post-annealing grain diameters even when the initial layer thickness is varied. Thermodynamic Monte Carlo simulations show a solid solution when the bulk constraint is imposed, in line with the phase diagram expectation, and a polycrystalline nanostructure with solute segregated intergranular regions with full equilibration, in general agreement with the experimental observations. (C) 2016 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:8 / 16
页数:9
相关论文
共 50 条
  • [1] Exploring the microstructural evolution of Hf-Ti: From nanometallic multilayers to nanostructures
    Riano, J. Sebastian
    Hodge, Andrea M.
    SCRIPTA MATERIALIA, 2018, 142 : 55 - 60
  • [2] Nanoscale segregation behavior and high-temperature stability of nanocrystalline W-20 at.% Ti
    Chookajorn, Tongjai
    Schuh, Christopher A.
    ACTA MATERIALIA, 2014, 73 : 128 - 138
  • [3] Microstructure and Thermal Stability of High-Temperature Titanium Alloy with Hf Element
    Wang, Congcong
    Li, Bolong
    Wang, Tongbo
    Qi, Peng
    Qiao, Xu
    Yin, Jiaming
    Nie, Zuoren
    ADVANCED ENGINEERING MATERIALS, 2022, 24 (11)
  • [4] High-temperature stability of copper nanoparticles through Cu@Ag nanostructures
    Michaud, Thomas
    Nobre, Sonia Sousa
    Baffie, Thierry
    Pelissier, Nathalie
    Simonato, Jean-Pierre
    JOURNAL OF NANOPARTICLE RESEARCH, 2019, 21 (06)
  • [5] Superior high-temperature oxidation resistance of magnetron sputtered Hf-B-Si-C-N film
    Zeman, P.
    Zuzjakova, S.
    Mares, P.
    Cerstvy, R.
    Zhang, M.
    Jiang, J.
    Meletis, E. I.
    Vlcek, J.
    CERAMICS INTERNATIONAL, 2016, 42 (04) : 4853 - 4859
  • [6] High-temperature oxidation resistance of sputtered (Al,Cr,Nb,Ta,Ti,Si) N coatings
    Kretschmer, Andreas
    Mayrhofer, Paul Heinz
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1010
  • [7] Sample size dependence of high-temperature thermal stability of Ti2AlN MAX phase
    Chuev, I. I.
    Kovalev, D. Yu
    Guda, S. A.
    CERAMICS INTERNATIONAL, 2023, 49 (23) : 37912 - 37921
  • [8] High-temperature microstructure evolution and thermal stability of SiCf/ Ti60 composites
    Gan, Zhicong
    Wang, Yumin
    Zhang, Xu
    Yang, Lina
    Zhang, Yuming
    Jia, Qiuyue
    Kong, Xu
    Zhang, Guoxing
    Yang, Qing
    Yang, Rui
    MATERIALS TODAY COMMUNICATIONS, 2024, 40
  • [9] Nanostructures for In Situ SERS Analysis of High-Temperature Processes
    Huang, Jingying
    Wu, Jiahao
    Shao, Jing
    Tao, Youkun
    CHEMOSENSORS, 2023, 11 (01)
  • [10] Grain growth in Ni50Ti30Hf20 high-temperature shape memory alloy
    Shuitcev, A. V.
    Ren, Y.
    Gunderov, D. V.
    Vasin, R. N.
    Li, L.
    Valiev, R. Z.
    Zheng, Y. F.
    Tong, Y. X.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 918