Transition rates via Bethe ansatz for the spin-1/2 planar XXZ antiferromagnet

被引:25
作者
Biegel, D [1 ]
Karbach, M
Müller, G
机构
[1] Berg Univ Wuppertal, Fachbereich Phys, D-42097 Wuppertal, Germany
[2] Univ Rhode Isl, Dept Phys, Kingston, RI 02881 USA
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2003年 / 36卷 / 20期
关键词
D O I
10.1088/0305-4470/36/20/301
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A novel determinantal representation for matrix elements of local spin operators between Bethe wavefunctions of the one-dimensional s = 1/2 XXZ model is used to calculate transition rates for dynamic spin structure factors in the planar regime. In a first application, high-precision numerical data are presented for lineshapes and band edge singularities of the in-plane (xx) two-spinon dynamic spin structure factor.
引用
收藏
页码:5361 / 5368
页数:8
相关论文
共 22 条
[1]   Transition rates via Bethe ansatz for the spin-1/2 Heisenberg chain [J].
Biegel, D ;
Karbach, M ;
Müller, G .
EUROPHYSICS LETTERS, 2002, 59 (06) :882-888
[2]  
BIEGEL D, UNPUB
[3]  
BIEGEL D, 2000, THESIS BERGISCHE U G
[4]   Exact two-spinon dynamic structure factor of the one-dimensional s=1/2 Heisenberg-Ising antiferromagnet [J].
Bougourzi, AH ;
Karbach, M ;
Muller, G .
PHYSICAL REVIEW B, 1998, 57 (18) :11429-11438
[5]   The sl2 loop algebra symmetry of the six-vertex model at roots of unity [J].
Deguchi, T ;
Fabricius, K ;
McCoy, BM .
JOURNAL OF STATISTICAL PHYSICS, 2001, 102 (3-4) :701-736
[6]   ANISOTROPIC LINEAR MAGNETIC CHAIN [J].
DESCLOIZ.J ;
GAUDIN, M .
JOURNAL OF MATHEMATICAL PHYSICS, 1966, 7 (08) :1384-+
[7]   Completing Bethe's equations at roots of unity [J].
Fabricius, K ;
McCoy, BM .
JOURNAL OF STATISTICAL PHYSICS, 2001, 104 (3-4) :573-587
[8]   Bethe's equation is incomplete for the XXZ model at roots of unity [J].
Fabricius, K ;
McCoy, BM .
JOURNAL OF STATISTICAL PHYSICS, 2001, 103 (5-6) :647-678
[9]  
FADDEEV LD, 1984, J SOVIET MATH, V24, P241, DOI DOI 10.1007/BF01087245
[10]   Critical properties of the one-dimensional spin-1/2 antiferromagnetic Heisenberg model in the presence of a uniform field [J].
Fledderjohann, A ;
Gerhardt, C ;
Mutter, KH ;
Schmitt, A ;
Karbach, M .
PHYSICAL REVIEW B, 1996, 54 (10) :7168-7176