On a Classification of 4-d Gradient Ricci Solitons with HarmonicWeyl Curvature

被引:16
作者
Kim, Jongsu [1 ]
机构
[1] Sogang Univ, Dept Math, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
Gradient Ricci soliton; Harmonic Weyl tensor; Codazzi tensor; SHRINKING SOLITONS; WEYL TENSOR; FLOW; RIGIDITY;
D O I
10.1007/s12220-016-9707-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a characterization of 4-dimensional (not necessarily complete) gradient Ricci solitons (M, g, f) which have harmonicWeyl curvature, i.e., delta W = 0. Roughly speaking, we prove that the soliton metric g is locally isometric to one of the following four types: an Einstein metric, the product R-2 x N. of the Euclidean metric and a 2-d Riemannian manifold of constant curvature. lambda not equal 0, a certain singular metric and a locally conformally flat metric. The method here is motivated by Cao-Chen's works (in Trans Am Math Soc 364: 2377-2391, 2012; DukeMath J 162: 10031204, 2013) and Derdzinski's study on Codazzi tensors (in Math Z 172: 273-280, 1980). Combined with the previous results on locally conformally flat solitons, our characterization yields a new classification of 4-d complete steady solitons with delta W = 0. For the shrinking case, it re-proves the rigidity result (Fernandez-Lopez and GarciaRio inMath Z 269: 461- 466, 2011; Munteanu and Sesum in J. Geom Anal 23: 539- 561, 2013) in 4- d. It also helps to understand the expanding case; we now understand all 4- d non- conformally flat ones with delta W = 0. We also characterize locally 4- d (not necessarily complete) gradient Ricci solitons with harmonic curvature.
引用
收藏
页码:986 / 1012
页数:27
相关论文
共 33 条
[1]  
[Anonymous], 1987, EINSTEIN MANIFOLDS E
[2]   Two-Dimensional Gradient Ricci Solitons Revisited [J].
Bernstein, Jacob ;
Mettler, Thomas .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (01) :78-98
[3]   Rotational symmetry of self-similar solutions to the Ricci flow [J].
Brendle, Simon .
INVENTIONES MATHEMATICAE, 2013, 194 (03) :731-764
[4]  
Cao H.D, 2010, ADV LECTURES MATH AL, V11
[5]  
Cao H.-D., 2008, SURVEYS DIFFERENTIAL, V12, P47
[6]   Bach-flat gradient steady Ricci solitons [J].
Cao, Huai-Dong ;
Catino, Giovanni ;
Chen, Qiang ;
Mantegazza, Carlo ;
Mazzieri, Lorenzo .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 49 (1-2) :125-138
[7]   ON BACH-FLAT GRADIENT SHRINKING RICCI SOLITONS [J].
Cao, Huai-Dong ;
Chen, Qiang .
DUKE MATHEMATICAL JOURNAL, 2013, 162 (06) :1149-1169
[8]   ON LOCALLY CONFORMALLY FLAT GRADIENT STEADY RICCI SOLITONS [J].
Cao, Huai-Dong ;
Chen, Qiang .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2012, 364 (05) :2377-2391
[9]   ON LOCALLY CONFORMALLY FLAT GRADIENT SHRINKING RICCI SOLITONS [J].
Cao, Xiaodong ;
Wang, Biao ;
Zhang, Zhou .
COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2011, 13 (02) :269-282
[10]   THE EVOLUTION OF THE WEYL TENSOR UNDER THE RICCI FLOW [J].
Catino, Giovanni ;
Mantegazza, Carlo .
ANNALES DE L INSTITUT FOURIER, 2011, 61 (04) :1407-1435