Global existence and uniform decay of solutions for a system of wave equations with dispersive and dissipative terms

被引:11
作者
Liu, Wenjun [1 ,2 ]
机构
[1] Nanjing Univ Informat Sci & Technol, Coll Math & Phys, Nanjing 210044, Peoples R China
[2] Southeast Univ, Dept Math, Nanjing 210096, Peoples R China
基金
中国国家自然科学基金;
关键词
Global existence; uniform decay; dispersive; dissipative; BLOW-UP; NONEXISTENCE THEOREMS; EVOLUTION-EQUATIONS; STABILITY;
D O I
10.1007/s11464-010-0060-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we consider a system of two coupled wave equations with dispersive and viscosity dissipative terms under Dirichlet boundary conditions. The global existence of weak solutions as well as uniform decay rates (exponential one) of the solution energy are established.
引用
收藏
页码:555 / 574
页数:20
相关论文
共 28 条
[1]   Asymptotic stability and energy decay rates for solutions of the wave equation with memory in a star-shaped domain [J].
Aassila, M ;
Cavalcanti, MM ;
Soriano, JA .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (05) :1581-1602
[2]   Decay estimates for second order evolution equations with memory [J].
Alabau-Boussouira, Fatiha ;
Cannarsa, Piermarco ;
Sforza, Daniela .
JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 254 (05) :1342-1372
[3]  
Andrade D., 2003, Bol. Soc. Parana. Mat, V21, P127
[4]  
[Anonymous], 1969, QUELQUES METODES RES
[5]  
[Anonymous], 2002, J. Differ. Equ
[7]   General decay rate estimates for viscoelastic dissipative systems [J].
Cavalcanti, M. M. ;
Cavalcanti, V. N. Domingos ;
Martinez, P. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (01) :177-193
[8]   Frictional versus viscoelastic damping in a semilinear wave equation [J].
Cavalcanti, MM ;
Oquendo, HP .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2003, 42 (04) :1310-1324
[9]   Existence and uniform decay for a non-linear viscoelastic equation with strong damping [J].
Cavalcanti, MM ;
Cavalcanti, VND ;
Ferreira, J .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2001, 24 (14) :1043-1053
[10]   EXISTENCE OF A SOLUTION OF THE WAVE-EQUATION WITH NONLINEAR DAMPING AND SOURCE TERMS [J].
GEORGIEV, V ;
TODOROVA, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1994, 109 (02) :295-308