Joint m-quasihyponormal operators on a Hilbert space

被引:5
作者
Mahmoud, Sid Ahmed Ould Ahmed [1 ]
Alshammari, Hadi Obaid [1 ]
机构
[1] Jouf Univ, Coll Sci, Math Dept, POB 2014, Sakaka, Saudi Arabia
关键词
Hilbert space; Quasihyponormal; Joint hyponormal tuple; Joint normal tuple;
D O I
10.1007/s43034-021-00130-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, We introduce a new class of multivariable operators known as joint m-quasihyponormal tuple of operators. It is a naturel extension of joint normal and joint hyponormal tuples of operators. An m-tuple of operators S = (S-1,..., S-m) is an element of B(H)(m) is said to be joint m-quasihyponormal tuple if S satisfying Sigma(1 <= l, k <= m) < S*(k)[S*(k), S-l]S(l)u(k) vertical bar u(l) > >= 0, for each finite collections (u(l))(1 <= l <= m) is an element of H. Some properties of this class of multivariable operators are studied.
引用
收藏
页数:20
相关论文
共 17 条
[1]   ON JOINT HYPONORMALITY OF OPERATORS [J].
ATHAVALE, A .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1988, 103 (02) :417-423
[2]   Joint normality of operators in semi-Hilbertian spaces [J].
Baklouti, Hamadi ;
Feki, Kais ;
Mahmoud, Sid Ahmed Ould Ahmed .
LINEAR & MULTILINEAR ALGEBRA, 2020, 68 (04) :845-866
[3]   Joint numerical ranges of operators in semi-Hilbertian spaces [J].
Baklouti, Hamadi ;
Feki, Kais ;
Ahmed, Ould Ahmed Mahmoud Sid .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2018, 555 :266-284
[4]  
Braha NL, 2009, BULL MATH ANAL APPL, V1, P23
[5]  
Ch M., 2017, Funct. Anal. Approx. Comput, V9, P21
[6]  
Ch M., 2009, J INEQUAL APPL, V22, P931
[7]  
Conway JB., 1990, COURSE FUNCTIONAL AN
[8]   m-isometric commuting tuples of operators on a Hilbert space [J].
Gleason, Jim ;
Richter, Stefan .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 56 (02) :181-196
[9]   EXAMPLES OF m-ISOMETRIC TUPLES OF OPERATORS ON A HILBERT SPACE [J].
Gu, Caixing .
JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 55 (01) :225-251
[10]   Joint A-hyponormality of operators in semi-Hilbert spaces [J].
Guesba, Messaoud ;
Beiba, El Moctar Ould ;
Mahmoud, Sid Ahmed Ould Ahmed .
LINEAR & MULTILINEAR ALGEBRA, 2021, 69 (15) :2888-2907