An SEU-Resilient SRAM Bitcell in 65-nm CMOS Technology

被引:1
|
作者
Chen, Qingyu [1 ,2 ]
Wang, Haibin [3 ,5 ]
Chen, Li [2 ]
Li, Lixiang [6 ]
Zhao, Xing [2 ]
Liu, Rui [4 ]
Chen, Mo [4 ]
Li, Xuantian [4 ]
机构
[1] Xian Microelect Technol Inst, Xian, Shaanxi, Peoples R China
[2] Univ Saskatchewan, Dept Elect & Comp Engn, Saskatoon, SK, Canada
[3] Univ Saskatchewan, Saskatoon, SK, Canada
[4] Univ Saskatchewan, Elect Engn, Saskatoon, SK, Canada
[5] Hohai Univ, Coll IOT Engr, Nanjing, Jiangsu, Peoples R China
[6] Dalhousie Univ, Halifax, NS, Canada
基金
中国国家自然科学基金; 加拿大自然科学与工程研究理事会;
关键词
SRAM; 12 T bitcell; Single event upset; Radiation hardening by design; CHARGE COLLECTION; DESIGN; UPSET; RELIABILITY; MITIGATION; MEMORIES; LAYOUT; CELL;
D O I
10.1007/s10836-016-5586-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper presents an SEU-resilient 12 T SRAM bitcell. Simulation results demonstrate that it has higher critical charge than the traditional 6 T cell. Alpha and proton testing results validate that it has a lower soft error rate compared to the reference designs for all data patterns and supply voltage levels. The improvement in SEU tolerance is achieved at the expense of 2X area penalty.
引用
收藏
页码:385 / 391
页数:7
相关论文
共 50 条
  • [31] Comparison of heavy-ion induced SEU for D-and TMR-flip-flop designs in 65-nm bulk CMOS technology
    He YiBai
    Chen ShuMing
    SCIENCE CHINA-INFORMATION SCIENCES, 2014, 57 (10) : 1 - 7
  • [32] Comparison of heavy-ion induced SEU for D- and TMR-flip-flop designs in 65-nm bulk CMOS technology
    HE YiBai
    CHEN ShuMing
    Science China(Information Sciences), 2014, 57 (10) : 223 - 229
  • [33] A Method to Improve Reliability in a 65-nm SRAM PUF Array
    Shifman, Yizhak
    Miller, Avi
    Keren, Osnat
    Weizmann, Yoav
    Shor, Joseph
    IEEE SOLID-STATE CIRCUITS LETTERS, 2018, 1 (06): : 138 - 141
  • [34] Negative and Positive Muon-induced SEU Cross Sections in 28-nm and 65-nm Planar Bulk CMOS SRAMs
    Liao, Wang
    Hashimoto, Masanori
    Manabe, Seiya
    Watanabe, Yukinobu
    Abe, Shin-ichiro
    Nakano, Keita
    Takeshita, Hayato
    Tampo, Motonobu
    Takeshita, Soshi
    Miyake, Yasuhiro
    2019 IEEE INTERNATIONAL RELIABILITY PHYSICS SYMPOSIUM (IRPS), 2019,
  • [35] 157-nm lithography for 65-nm node SRAM-gate
    Suganaga, T
    Irie, S
    Miyoshi, S
    Kim, JH
    Watanabe, K
    Kurose, E
    Furukawa, T
    Hagiwara, T
    Ishimaru, T
    Itani, T
    OPTICAL MICROLITHOGRAPHY XVI, PTS 1-3, 2003, 5040 : 261 - 269
  • [36] The multiport CMOS memory cell based on the DICE trigger with two spaced transistor groups for hardened 65-nm CMOS SRAM
    Katunin, Yuri V.
    Stenin, Vladimir Ya.
    2016 INTERNATIONAL SIBERIAN CONFERENCE ON CONTROL AND COMMUNICATIONS (SIBCON), 2016,
  • [37] A Compact 57-67 GHz Bidirectional LNAPA in 65-nm CMOS Technology
    Meng, Fanyi
    Ma, Kaixue
    Yeo, Kiat Seng
    Boon, Chirn Chye
    Yi, Xiang
    Sun, Junyi
    Feng, Guangyin
    Xu, Shanshan
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2016, 26 (08) : 628 - 630
  • [38] A Compact Low-Power Driver Array for VCSELs in 65-nm CMOS Technology
    Zeng, Zhiyao
    Sun, Kexu
    Wang, Guanhua
    Zhang, Tao
    Kulis, Szymon
    Gui, Ping
    Moreira, Paulo
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2017, 64 (06) : 1599 - 1604
  • [39] A K-band LC Voltage Controlled Oscillator in 65-nm CMOS technology
    Leng, Huinan
    Zhu, Fang
    2022 INTERNATIONAL CONFERENCE ON MICROWAVE AND MILLIMETER WAVE TECHNOLOGY (ICMMT), 2022,
  • [40] Design of bioinspired tripartite synapse analog integrated circuit in 65-nm CMOS Technology
    Tir, Shohreh
    Shalchian, Majid
    Moezzi, Mohsen
    JOURNAL OF COMPUTATIONAL ELECTRONICS, 2020, 19 (03) : 1313 - 1328