Vandermonde Wave Function Ansatz for Improved Variational Monte Carlo

被引:5
|
作者
Acevedo, Alberto [1 ]
Curry, Michael [2 ]
Joshi, Shantanu H. [3 ,4 ]
Leroux, Brett [5 ]
Malaya, Nicholas [6 ]
机构
[1] Univ Arizona, Dept Math, Tucson, AZ 85721 USA
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[3] Univ Calif Los Angeles, Dept Neurol, Los Angeles, CA 90024 USA
[4] Univ Calif Los Angeles, Dept Bioengn, Los Angeles, CA 90024 USA
[5] Univ Calif Davis, Dept Math, Davis, CA 95616 USA
[6] Adv Micro Devices Inc, AMD Res, Austin, TX USA
关键词
Schrodinger equation; Vandermonde ansatz; Variational Monte Carlo;
D O I
10.1109/DLS51937.2020.00010
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Solutions to the Schrodinger equation can be used to predict the electronic structure of molecules and materials and therefore infer their complex physical and chemical properties. Variational Quantum Monte Carlo (VMC) is a technique that can be used to solve the weak form of the Schrodinger equation. Applying VMC to systems with N electrons involves evaluating the determinant of an N by N matrix. The evaluation of this determinant scales as O(N-3) and is the main computational cost in the VMC process. In this work, we investigate an alternative VMC technique based on the Vandermonde determinant. The Vandermonde determinant is a product of pairwise differences and so evaluating it scales as O(N-2). Therefore, this approach reduces the computational cost by a factor of N. The Vandermonde determinant was implemented in PyTorch and the performance was assessed in approximating the ground state energy of various quantum systems against existing techniques. The performance is evaluated in a variety of systems, starting with the one-dimensional particle in a box, and then considering more complicated atomic systems with multiple particles. The Vandermonde determinant was also implemented in PauliNet, a deep-learning architecture for VMC. The new method is shown to be computationally efficient, and results in a speed-up as large as 5X. In these cases, the new ansatz obtains a reasonable approximation for wavefunctions of atomic systems, but does not reach the accuracy of the Hartree-Fock method that relies on the Slater determinant. It is observed that while the use of neural networks in VMC can result in highly accurate solutions, further work is necessary to determine an appropriate balance between computational time and accuracy.
引用
收藏
页码:40 / 47
页数:8
相关论文
共 50 条
  • [11] An improved transition matrix for variational quantum Monte Carlo
    Mella, M
    Luchow, A
    Anderson, JB
    CHEMICAL PHYSICS LETTERS, 1997, 265 (3-5) : 467 - 472
  • [12] Molecular Properties by Quantum Monte Carlo: An Investigation on the Role of the Wave Function Ansatz and the Basis Set in the Water Molecule
    Zen, Andrea
    Luo, Ye
    Sorella, Sandro
    Guidoni, Leonardo
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2013, 9 (10) : 4332 - 4350
  • [13] Delta function calculations using variational Monte Carlo
    Alexander, SA
    Coldwell, RL
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 1999, 487 (1-2): : 67 - 73
  • [14] Symmetry-Projected Jastrow Mean-Field Wave Function in Variational Monte Carlo
    Mahajan, Ankit
    Sharma, Sandeep
    JOURNAL OF PHYSICAL CHEMISTRY A, 2019, 123 (17): : 3911 - 3921
  • [15] Improved Speed and Scaling in Orbital Space Variational Monte Carlo
    Sabzeyari, Iliya
    Sharma, Sandeep
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2018, 14 (12) : 6276 - 6286
  • [16] Variational Monte Carlo Calculations of A ≤ 4 Nuclei with an Artificial Neural-Network Correlator Ansatz
    Adams, Corey
    Carleo, Giuseppe
    Lovato, Alessandro
    Rocco, Noemi
    PHYSICAL REVIEW LETTERS, 2021, 127 (02)
  • [17] Variational Quantum Monte Carlo Method with a Neural-Network Ansatz for Open Quantum Systems
    Nagy, Alexandra
    Savona, Vincenzo
    PHYSICAL REVIEW LETTERS, 2019, 122 (25)
  • [18] Monte-Carlo thermodynamic Bethe ansatz
    Gepner, D
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2006, 20 (14): : 2049 - 2064
  • [19] Improved Monte Carlo inversion of surface wave data
    Socco, Laura Valentina
    Boiero, Daniele
    GEOPHYSICAL PROSPECTING, 2008, 56 (03) : 357 - 371
  • [20] Improved efficiency with variational Monte Carlo using two level sampling
    Dewing, M
    JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (13): : 5123 - 5125