Adsorption of nucleotides on the rutile (110) surface

被引:28
作者
Gemming, Sibylle [1 ]
Enyashin, Andrey N. [2 ,3 ]
Frenzel, Johannes [4 ]
Seifert, Gotthard [3 ]
机构
[1] Forschungszentrum Dresden Rossendorf, D-01314 Dresden, Germany
[2] Tech Univ Dresden, Dresden, Germany
[3] Inst Solid State Chem, Ekaterinburg, Russia
[4] Univ Calgary, Dept Chem, Calgary, AB T2N 1N4, Canada
关键词
Nucleic acids; Adsorption; Rutile surface; Nanotubes; CARBON NANOTUBE; DNA; TIO2; FUNCTIONALIZATION; TRANSISTORS; ENERGETICS; DEVICE; ACID; DFT;
D O I
10.3139/146.110337
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The present study aims at the computer-aided design of suitably functionalized oxide surfaces for the integration of nanotubes into multi-purpose nano-electronic devices. The adsorption of the nucleotide cytidine monophosphate on the rutile (110) surface is investigated by density-functional-based tight-binding calculations. The nucleotide favors anchoring with two oxygen atoms of its phosphate part. Adsorption occurs preferentially at two neighboring five-fold coordinated Ti atoms along the [001] direction, thus opening a pathway to an ordered adsorption of nanotubes along [001]. The electronic densities of state show that the aromatic part of the cytidine residue remains unchanged upon adsorption on rutile. This implies that no significant changes occur in the nanotube binding capacity by it-stacking of the aromatic part, hence, nucleotide-functionalized oxide surfaces are ideal substrates for the ordered, stable and electronically and chemically inert immobilization of nanotubes.
引用
收藏
页码:758 / 764
页数:7
相关论文
共 50 条
  • [21] Composition, structure, and stability of the rutile TiO2(110) surface: Oxygen depletion, hydroxylation, hydrogen migration, and water adsorption
    Kowalski, Piotr M.
    Meyer, Bernd
    Marx, Dominik
    PHYSICAL REVIEW B, 2009, 79 (11)
  • [22] A systematic study of the influence of the slab thickness on the Lewis acidity of the rutile (110) surface: A quantum-mechanical simulation of CO adsorption
    Scaranto, Jessica
    Giorgianni, Santi
    CHEMICAL PHYSICS LETTERS, 2009, 473 (1-3) : 179 - 183
  • [23] Surface and interstitial transition barriers in rutile (110) surface growth
    Sanville, E. J.
    Vernon, L. J.
    Kenny, S. D.
    Smith, R.
    Moghaddam, Y.
    Browne, C.
    Mulheran, P.
    PHYSICAL REVIEW B, 2009, 80 (23)
  • [24] Adsorption of phenylphosphonic acid on rutile TiO2(110)
    Koebl, Julia
    Wechsler, Daniel
    Kataev, Elmar Y.
    Williams, Federico J.
    Tsud, Nataliya
    Franchi, Stefano
    Steinrueck, Hans-Peter
    Lytken, Ole
    SURFACE SCIENCE, 2020, 698 (698)
  • [25] Adsorption of small hydrocarbons on rutile TiO2(110)
    Chen, Long
    Smith, R. Scott
    Kay, Bruce D.
    Dohnalek, Zdenek
    SURFACE SCIENCE, 2016, 650 : 83 - 92
  • [26] First-row transition metal atoms adsorption on rutile TiO2(110) surface
    Zeineb Helali
    Alexis Markovits
    Christian Minot
    Manef Abderrabba
    Structural Chemistry, 2012, 23 : 1309 - 1321
  • [27] Nitric oxide adsorption on Nb(110) surface
    Ning, Hua
    Cai, Jian-Qiu
    Tao, Xiang-Ming
    Tan, Ming-Qiu
    APPLIED SURFACE SCIENCE, 2012, 258 (10) : 4428 - 4435
  • [28] The slabs for the rutile TiO2 (110) surface
    Li Xuechao
    Shi Jianhao
    Wan Rundong
    JOURNAL OF SEMICONDUCTORS, 2016, 37 (12)
  • [29] Molecular dynamics study on surface structure and surface energy of rutile TiO2 (110)
    Song, Dai-Ping
    Liang, Ying-Chun
    Chen, Ming-Jun
    Bai, Qing-Shun
    APPLIED SURFACE SCIENCE, 2009, 255 (11) : 5702 - 5708
  • [30] The slabs for the rutile TiO2(110) surface
    李学潮
    施剑皓
    万润东
    Journal of Semiconductors, 2016, (12) : 16 - 21