Quasi-convex punctions in carnot groups

被引:5
|
作者
Sun, Mingbao [1 ]
Yang, Xiaoping
机构
[1] Hunan Inst Sci & Technol, Dept Math Appl, Yueyang 414000, Hunan, Peoples R China
[2] Nanjing Univ Sci & Technol, Dept Math Appl, Nanjing 210094, Peoples R China
基金
中国国家自然科学基金;
关键词
h-quasiconvex function; Carnot group; Lipschitz continuity;
D O I
10.1007/s11401-005-0052-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, the authors introduce the concept of h-quasiconvex functions on Carnot groups G. It is shown that the notions of h-quasiconvex functions and h-convex sets are equivalent and the L(infinity) estimates of first derivatives of h-quasiconvex functions are given. For a Carnot group G of step two, it is proved that h-quasiconvex functions are locally bounded from above. Furthermore, the authors obtain that h-convex functions are locally Lipschitz continuous and that an h-convex function is twice differentiable almost everywhere.
引用
收藏
页码:235 / 242
页数:8
相关论文
共 50 条
  • [31] On the "three-space'' problem for locally quasi-convex topological groups
    Castillo, JMF
    ARCHIV DER MATHEMATIK, 2000, 74 (04) : 253 - 262
  • [32] Effective coherence of groups discriminated by a locally quasi-convex hyperbolic group
    Bumagin, Inna
    Macdonald, Jeremy
    GROUPS GEOMETRY AND DYNAMICS, 2016, 10 (02) : 545 - 582
  • [33] Locally quasi-convex compatible topologies on locally compact abelian groups
    Lydia Außenhofer
    Dikran Dikranjan
    Mathematische Zeitschrift, 2020, 296 : 325 - 351
  • [34] Locally quasi-convex compatible topologies on locally compact abelian groups
    Aussenhofer, Lydia
    Dikranjan, Dikran
    MATHEMATISCHE ZEITSCHRIFT, 2020, 296 (1-2) : 325 - 351
  • [35] Convex functions on Carnot groups
    Juutinen, Petri
    Lu, Guozhen
    Manfredi, Juan J.
    Stroffolini, Bianca
    REVISTA MATEMATICA IBEROAMERICANA, 2007, 23 (01) : 191 - 200
  • [36] On duality for quasi-convex supremization and reverse convex infimization
    Singer, I
    OPTIMIZATION THEORY: RECENT DEVELOPMENTS FROM MATRAHAZA, 2001, 59 : 225 - 254
  • [37] Better approximations for quasi-convex functions
    Kadakal, Huriye
    STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2024, 69 (02): : 267 - 281
  • [38] LOCALLY UNIFORMLY QUASI-CONVEX PROGRAMMING
    LOONEY, CG
    SIAM JOURNAL ON APPLIED MATHEMATICS, 1975, 28 (04) : 881 - 884
  • [39] QUASI-CONVEX FUNCTIONS WITH SUBQUADRATIC GROWTH
    SVERAK, V
    PROCEEDINGS OF THE ROYAL SOCIETY-MATHEMATICAL AND PHYSICAL SCIENCES, 1991, 433 (1889): : 723 - 725
  • [40] Stallings graphs for quasi-convex subgroups
    Kharlampovich, Olga
    Miasnikov, Alexei
    Weil, Pascal
    JOURNAL OF ALGEBRA, 2017, 488 : 442 - 483