Quantum Spin Hall Effect and Tunable Spin Transport in As-Graphane

被引:18
作者
Zhang, L. Z. [1 ,2 ]
Zhai, F. [3 ,4 ]
Jin, Kyung-Hwan [2 ]
Cui, B. [2 ]
Huang, Bing [2 ,5 ]
Wang, Zhiming [1 ]
Lu, J. Q. [3 ,4 ]
Liu, Feng [2 ,6 ]
机构
[1] Univ Elect Sci & Technol China, Inst Fundamental & Frontier Sci, Chengdu 610054, Peoples R China
[2] Univ Utah, Dept Mat Sci & Engn, Salt Lake City, UT 84112 USA
[3] Univ Puerto Rico, Dept Phys, Mayaguez, PR 00681 USA
[4] Univ Puerto Rico, Inst Funct Nanomat, Mayaguez, PR 00681 USA
[5] Beijing Computat Sci Res Ctr, Beijing 100193, Peoples R China
[6] Collaborat Innovat Ctr Quantum Matter, Beijing 100084, Peoples R China
基金
美国国家科学基金会;
关键词
Topological insulator; tunable spin transport; graphane; first-principles calculations; TOPOLOGICAL INSULATORS; EPITAXIAL-GROWTH; SPINTRONICS; NANORIBBONS; ADSORPTION; GRAPHENES;
D O I
10.1021/acs.nanolett.7b01438
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Tunable spin transport in nanodevices is highly desirable to spintronics. Here, we predict existence of quantum spin Hall effects and tunable spin transport in As-graphane, based on first-principle density functional theory and tight binding calculations. Monolayer As-graphane is constituted by using As adsorbing on graphane with honeycomb H vacancies. Owing to the surface strain, monolayer As-graphane nanoribbons will self-bend toward the graphane side. The naturally curved As-graphane nanoribbons then exhibit unique spin transport properties, distinctively different from the flat ones, which is a two-dimensional topological insulator. Under external Stress, one can realize tunable spin transport in curved As-graphane nanoribon arrays. Such intriguing mechanical bending induced, spin flips can offer promising applications in the future nanospintronics devices.
引用
收藏
页码:4359 / 4364
页数:6
相关论文
共 42 条
[1]   Electronic measurement and control of spin transport in silicon [J].
Appelbaum, Ian ;
Huang, Biqin ;
Monsma, Douwe J. .
NATURE, 2007, 447 (7142) :295-298
[2]   Spin-Seebeck effect on the surface of a topological insulator due to nonequilibrium spin-polarization parallel to the direction of thermally driven electronic transport [J].
Chang, Po-Hao ;
Mahfouzi, Farzad ;
Nagaosa, Naoto ;
Nikolic, Branislav K. .
PHYSICAL REVIEW B, 2014, 89 (19)
[3]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[4]   Spin-orbit interaction in curved graphene ribbons [J].
Gosalbez-Martinez, D. ;
Palacios, J. J. ;
Fernandez-Rossier, J. .
PHYSICAL REVIEW B, 2011, 83 (11)
[5]   Colloquium: Topological insulators [J].
Hasan, M. Z. ;
Kane, C. L. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (04) :3045-3067
[6]   The nontrivial electronic structure of Bi/Sb honeycombs on SiC(0001) [J].
Hsu, Chia-Hsiu ;
Huang, Zhi-Quan ;
Chuang, Feng-Chuan ;
Kuo, Chien-Cheng ;
Liu, Yu-Tzu ;
Lin, Hsin ;
Bansil, Arun .
NEW JOURNAL OF PHYSICS, 2015, 17
[7]   Giant Topological Insulator Gap in Graphene with 5d Adatoms [J].
Hu, Jun ;
Alicea, Jason ;
Wu, Ruqian ;
Franz, Marcel .
PHYSICAL REVIEW LETTERS, 2012, 109 (26)
[8]   Bending strain engineering in quantum spin hall system for controlling spin currents [J].
Huang, Bing ;
Jin, Kyung-Hwan ;
Cui, Bin ;
Zhai, Feng ;
Mei, Jiawei ;
Liu, Feng .
NATURE COMMUNICATIONS, 2017, 8
[9]   Interface orbital engineering of large-gap topological states: Decorating gold on a Si(111) surface [J].
Huang, Bing ;
Jin, Kyung-Hwan ;
Zhuang, Houlong L. ;
Zhang, Lizhi ;
Liu, Feng .
PHYSICAL REVIEW B, 2016, 93 (11)
[10]   Spin rectification by orbital polarization in Bi-bilayer nanoribbons [J].
Jin, Kyung-Hwan ;
Jhi, Seung-Hoon .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2016, 18 (12) :8637-8642