Development of advanced preselection tools to reduce redundant plan comparisons in model-based selection of head and neck cancer patients for proton therapy

被引:4
|
作者
Tambas, Makbule [1 ]
van der Laan, Hans P. [1 ]
Rutgers, Wouter [1 ]
van den Hoek, Johanna G. M. [1 ]
Oldehinkel, Edwin [1 ]
Meijer, Tineke W. H. [1 ]
van der Schaaf, Arjen [1 ]
Scandurra, Daniel [1 ]
Free, Jeffrey [1 ]
Both, Stefan [1 ]
Steenbakkers, Roel J. H. M. [1 ]
Langendijk, Johannes A. [1 ]
机构
[1] Univ Groningen, Univ Med Ctr Groningen, Dept Radiat Oncol, Hanzepl 1, NL-9713 GZ Groningen, Netherlands
关键词
Proton therapy; Head and neck cancer; Patient selection; Preselection; IMPT; Plan comparison; TUBE-FEEDING DEPENDENCE; TREATMENT TIME; RADIOTHERAPY; SURVIVAL; OPTIMIZATION; IMPACT; ORGAN;
D O I
10.1016/j.radonc.2021.04.012
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Purpose: In the Netherlands, head and neck cancer (HNC) patients are selected for proton therapy (PT) based on estimated normal tissue complication probability differences (ANTCP) between photons and protons, which requires a plan comparison (VMAT vs. IMPT). We aimed to develop tools to improve patient selection for plan comparisons. Methods: This prospective study consisted of 141 consecutive patients in which a plan comparison was done. IMPT plans of patients not qualifying for PT were classified as 'redundant'. To prevent redundant IMPT planning, 5 methods that were primarily based on regression models were developed to predict IMPT Dmean to OARs, by using data from VMAT plans and volumetric data from delineated targets and OARs. Then, actual and predicted plan comparison outcomes were compared. The endpoint was being selected for proton therapy. Results: Seventy out of 141 patients (49.6%) qualified for PT. Using the developed preselection tools, redundant IMPT planning could have been prevented in 49-68% of the remaining 71 patients not qualifying for PT (=specificity) when the sensitivity of all methods was fixed to 100%, i.e., no false negative cases (positive predictive value range: 57-68%, negative predictive value: 100%). Conclusion: The advanced preselection tools, which uses volume and VMAT dose data, prevented labour intensive creation of IMPT plans in up to 68% of non-qualifying patients for PT. No patients qualifying for PT would have been incorrectly denied a plan comparison. This method contributes significantly to a more cost-effective model-based selection of HNC patients for PT. (c) 2021 The Author(s). Published by Elsevier B.V. Radiotherapy and Oncology 160 (2021) 61-68 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
引用
收藏
页码:61 / 68
页数:8
相关论文
共 29 条
  • [1] First experience with model-based selection of head and neck cancer patients for proton therapy
    Tambas, Makbule
    Steenbakkers, Roel J. H. M.
    van der Laan, Hans P.
    Wolters, Atje M.
    Kierkels, Roel G. J.
    Scandurra, Dan
    Korevaar, Erik W.
    Oldehinkel, Edwin
    van Zon-Meijer, Tineke W. H.
    Both, Stefan
    van den Hoek, Johanna G. M.
    Langendijk, Johannes A.
    RADIOTHERAPY AND ONCOLOGY, 2020, 151 : 206 - 213
  • [2] National Protocol for Model-Based Selection for Proton Therapy in Head and Neck Cancer
    Langendijk, Johannes A.
    Hoebers, Frank J. P.
    de Jong, Martin A.
    Doornaert, Patricia
    Terhaard, Chris H. J.
    Steenbakkers, Roel J. H. M.
    Hamming-Vrieze, Olga
    van de Kamer, Jeroen B.
    Verbakel, Wilko F. A. R.
    Keskin-Cambay, Fatma
    Reitsma, Johannes B.
    van der Schaaf, Arjen
    Boersma, Liesbeth J.
    Schuit, Ewoud
    INTERNATIONAL JOURNAL OF PARTICLE THERAPY, 2021, 8 (01) : 354 - 365
  • [3] A Decision Support Tool to Optimize Selection of Head and Neck Cancer Patients for Proton Therapy
    Tambas, Makbule
    van der Laan, Hans Paul
    van der Schaaf, Arjen
    Steenbakkers, Roel J. H. M.
    Langendijk, Johannes Albertus
    CANCERS, 2022, 14 (03)
  • [4] Impact of model and dose uncertainty on model-based selection of oropharyngeal cancer patients for proton therapy
    Bijman, Rik G.
    Breedveld, Sebastiaan
    Arts, Tine
    Astreinidou, Eleftheria
    de Jong, Martin A.
    Granton, Patrick V.
    Petit, Steven F.
    Hoogeman, Mischa S.
    ACTA ONCOLOGICA, 2017, 56 (11) : 1444 - 1450
  • [5] Model-Based Selection for Proton Therapy in Breast Cancer: Development of the National Indication Protocol for Proton Therapy and First Clinical Experiences
    Boersma, L. J.
    Sattler, M. G. A.
    Maduro, J. H.
    Bijker, N.
    Essers, M.
    van Gestel, C. M. J.
    Klaver, Y. L. B.
    Petoukhova, A. L.
    Rodrigues, M. F.
    Russell, N. S.
    van der Schaaf, A.
    Verhoeven, K.
    van Vulpen, M.
    Schuit, E.
    Langendijk, J. A.
    CLINICAL ONCOLOGY, 2022, 34 (04) : 247 - 257
  • [6] Proton vs photon: A model-based approach to patient selection for reduction of cardiac toxicity in locally advanced lung cancer
    Teoh, S.
    Fiorini, F.
    George, B.
    Vallis, K. A.
    Van den Heuvel, F.
    RADIOTHERAPY AND ONCOLOGY, 2020, 152 : 151 - 162
  • [7] PTV-based VMAT vs. robust IMPT for head-and-neck cancer: A probabilistic uncertainty analysis of clinical plan evaluation with the Dutch model-based selection
    Rojo-Santiago, Jesus
    Korevaar, Erik
    Perko, Zoltan
    Both, Stefan
    Habraken, Steven J. M.
    Hoogeman, Mischa S.
    RADIOTHERAPY AND ONCOLOGY, 2023, 186
  • [8] The relation between prediction model performance measures and patient selection outcomes for proton therapy in head and neck cancer
    Leeuwenberg, Artuur Marijn
    Reitsma, Johannes Bernardus
    van den Bosch, Lisa Griet Lydia Jozef
    Hoogland, Jeroen
    van der Schaaf, Arjen
    Hoebers, Frank Jozef Pieter
    Wijers, Oda Bemadette
    Langendijk, Johannes Albertus
    Moons, Karel Gerardus Maria
    Schuit, Ewoud
    RADIOTHERAPY AND ONCOLOGY, 2023, 179
  • [9] Pre-treatment analysis of non-rigid variations can assist robust intensity-modulated proton therapy plan selection for head and neck patients
    Zhang, Ying
    Alshaikhi, Jailan
    Amos, Richard A.
    Tan, Wenyong
    Anaya, Virginia Marin
    Pang, Yaru
    Royle, Gary
    Bar, Esther
    MEDICAL PHYSICS, 2022, 49 (12) : 7683 - 7693
  • [10] Knowledge-based planning for the radiation therapy treatment plan quality assurance for patients with head and neck cancer
    Cao, Wenhua
    Gronberg, Mary
    Olanrewaju, Adenike
    Whitaker, Thomas
    Hoffman, Karen
    Cardenas, Carlos
    Garden, Adam
    Skinner, Heath
    Beadle, Beth
    Court, Laurence
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2022, 23 (06):