Quantum key distribution over 300km

被引:3
作者
Ozhegov, R. [1 ]
Elezov, M. [1 ]
Kurochkin, Y. [2 ]
Kurochkin, V. [3 ]
Divochiy, A. [4 ]
Kovalyuk, V. [1 ,4 ]
Vachtomin, Y. [4 ]
Smirnov, K. [1 ,4 ,5 ]
Goltsman, G. [1 ,4 ,5 ]
机构
[1] Moscow State Pedag Univ, 1 Malaya Pirogovskaya St, Moscow 119435, Russia
[2] Russian Quantum Ctr, Moscow 143025, Russia
[3] Inst Semicond Phys, Novosibirsk 630090, Russia
[4] CJSC Superconducting nanotechnol, Moscow 119435, Russia
[5] Moscow Inst Elect & Math, Natl Res Univ Higher Sch Econ, Moscow 109028, Russia
来源
INTERNATIONAL CONFERENCE ON MICRO- AND NANO-ELECTRONICS 2014 | 2014年 / 9440卷
关键词
Quantum key distribution; quantum communication; quantum cryptography; superconducting single-photon detectors; FIELD-TEST; DETECTORS; SECURITY; SYSTEMS; PLUG;
D O I
10.1117/12.2180733
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We discuss the possibility of polarization state reconstruction and measurement over 302 km by Superconducting Single-Photon Detectors (SSPDs). Because of the excellent characteristics and the possibility to be effectively coupled to single-mode optical fiber many applications of the SSPD have already been reported. The most impressive one is the quantum key distribution (QKD) over 250 km distance. This demonstration shows further possibilities for the improvement of the characteristics of quantum-cryptographic systems such as increasing the bit rate and the quantum channel length, and decreasing the quantum bit error rate (QBER). This improvement is possible because SSPDs have the best characteristics in comparison with other single-photon detectors. We have demonstrated the possibility of polarization state reconstruction and measurement over 302.5 km with superconducting single-photon detectors. The advantage of an autocompensating optical scheme, also known as "plug&play" for quantum key distribution, is high stability in the presence of distortions along the line. To increase the distance of quantum key distribution with this optical scheme we implement the superconducting single photon detectors (SSPD). At the 5 MHz pulse repetition frequency and the average photon number equal to 0.4 we measured a 33 bit/s quantum key generation for a 101.7 km single mode ber quantum channel. The extremely low SSPD dark count rate allowed us to keep QBER at 1.6% level.
引用
收藏
页数:9
相关论文
共 38 条
[1]  
[Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
[2]  
Bennett C. H., 1992, Journal of Cryptology, V5, P3, DOI 10.1007/BF00191318
[3]   Experimental implementation of time-coding quantum key distribution [J].
Boucher, W ;
Debuisschert, T .
PHYSICAL REVIEW A, 2005, 72 (06)
[4]   Optical networking for quantum key distribution and quantum communications [J].
Chapuran, T. E. ;
Toliver, P. ;
Peters, N. A. ;
Jackel, J. ;
Goodman, M. S. ;
Runser, R. J. ;
McNown, S. R. ;
Dallmann, N. ;
Hughes, R. J. ;
McCabe, K. P. ;
Nordholt, J. E. ;
Peterson, C. G. ;
Tyagi, K. T. ;
Mercer, L. ;
Dardy, H. .
NEW JOURNAL OF PHYSICS, 2009, 11
[5]   Metropolitan all-pass and inter-city quantum communication network [J].
Chen, Teng-Yun ;
Wang, Jian ;
Liang, Hao ;
Liu, Wei-Yue ;
Liu, Yang ;
Jiang, Xiao ;
Wang, Yuan ;
Wan, Xu ;
Cai, Wen-Qi ;
Ju, Lei ;
Chen, Luo-Kan ;
Wang, Liu-Jun ;
Gao, Yuan ;
Chen, Kai ;
Peng, Cheng-Zhi ;
Chen, Zeng-Bing ;
Pan, Jian-Wei .
OPTICS EXPRESS, 2010, 18 (26) :27217-27225
[6]   Field Experiment on a "Star Type" Metropolitan Quantum Key Distribution Network [J].
Chen, Wei ;
Han, Zheng-Fu ;
Zhang, Tao ;
Wen, Hao ;
Yin, Zhen-Qiang ;
Xu, Fang-Xing ;
Wu, Qing-Lin ;
Liu, Yun ;
Zhang, Yang ;
Mo, Xiao-Fan ;
Gui, You-Zhen ;
Wei, Guo ;
Guo, Guang-Can .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2009, 21 (9-12) :575-577
[7]   Time coding protocols for quantum key distribution [J].
Debuisschert, T ;
Boucher, W .
PHYSICAL REVIEW A, 2004, 70 (04) :042306-1
[8]   QUANTUM CRYPTOGRAPHY BASED ON BELL THEOREM [J].
EKERT, AK .
PHYSICAL REVIEW LETTERS, 1991, 67 (06) :661-663
[9]   Trojan-horse attacks on quantum-key-distribution systems [J].
Gisin, N ;
Fasel, S ;
Kraus, B ;
Zbinden, H ;
Ribordy, G .
PHYSICAL REVIEW A, 2006, 73 (02)
[10]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195