Electrospun Polyimide Nanocomposite Fibers Reinforced with Core-Shell Fe-FeO Nanoparticles

被引:125
作者
Zhu, Jiahua [1 ]
Wei, Suying [2 ]
Chen, Xuelong [1 ]
Karki, Amar B. [3 ]
Rutman, Dan [1 ]
Young, David P. [3 ]
Guo, Zhanhu [1 ]
机构
[1] Lamar Univ, Dan F Smith Dept Chem Engn, ICL, Beaumont, TX 77710 USA
[2] Lamar Univ, Dept Chem & Phys, Beaumont, TX 77710 USA
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
关键词
IRON-OXIDE; POLYMER; FABRICATION; NANOFIBERS; MEMBRANES; RELAXATION; PROPERTY; DIAMETER; BEHAVIOR;
D O I
10.1021/jp1020033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Both pure polyimide (PI) and Fe-FeO nanoparticles reinforced PI nanocomposite fibers with a particle loading of 5, 10, 20, and 30 wt % are produced by electrospinning with optimized operational parameters such as polymer concentration, applied electrical voltage, and tip-to-collector distance. The morphology of the resulting products is correlated to the corresponding rheological behaviors of the pure PI and Fe-FeO/PI nanocomposite solutions. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) reveal an enhanced thermal stability of the nanocomposite fibers after introducing the Fe-FeO nanoparticles. The glass transition temperature (T-g) and melting temperature (T-m) of the nanocomposite fibers increase by 10-12 and 15-17 degrees C, respectively, as compared to those of the pure PI fibers. The magnetic properties of the Fe-FeO nanoparticles in the polymer nanocomposite fibers are different from those of the as-received nanoparticles. An increased shell thickness by 7.4% is deduced after the nanoparticles experiencing the high-voltage electrospinning.
引用
收藏
页码:8844 / 8850
页数:7
相关论文
共 55 条
[21]   High Energy Density Nanocomposites Based on Surface-Modified BaTiO3 and a Ferroelectric Polymer [J].
Kim, Philseok ;
Doss, Natalie M. ;
Tillotson, John P. ;
Hotchkiss, Peter J. ;
Pan, Ming-Jen ;
Marder, Seth R. ;
Li, Jiangyu ;
Calame, Jeffery P. ;
Perry, Joseph W. .
ACS NANO, 2009, 3 (09) :2581-2592
[22]   Porous polymer monolith assisted electrospray [J].
Koerner, T ;
Turck, K ;
Brown, L ;
Oleschuk, RD .
ANALYTICAL CHEMISTRY, 2004, 76 (21) :6456-6460
[23]   Study on polyimide/TiO2 nanocomposite membranes for gas separation [J].
Kong, Y ;
Du, HW ;
Yang, JR ;
Shi, DQ ;
Wang, YF ;
Zhang, YY ;
Xin, W .
DESALINATION, 2002, 146 (1-3) :49-55
[24]  
Krzysztof P, 2005, THERMAL DEGRADATION
[25]   Synthesis and dielectric properties of polyimide-chain-end tethered polyhedral oligomeric silsesquioxane nanocomposites [J].
Leu, CM ;
Reddy, GM ;
Wei, KH ;
Shu, CF .
CHEMISTRY OF MATERIALS, 2003, 15 (11) :2261-2265
[26]   Electrospinning of nanofibers: Reinventing the wheel? [J].
Li, D ;
Xia, YN .
ADVANCED MATERIALS, 2004, 16 (14) :1151-1170
[27]  
Liu RL, 2010, J APPL POLYM SCI, V116, P1313, DOI [10.1002/app.31539, 10.1002/app.31.539]
[28]   Restricted relaxation in polymer nanocomposites near the glass transition [J].
Lu, HB ;
Nutt, S .
MACROMOLECULES, 2003, 36 (11) :4010-4016
[29]   Surface modified nonwoven polysulphone (PSU) fiber mesh by electrospinning: A novel affinity membrane [J].
Ma, ZW ;
Kotaki, M ;
Ramarkrishna, S .
JOURNAL OF MEMBRANE SCIENCE, 2006, 272 (1-2) :179-187
[30]   Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites [J].
Magaraphan, R ;
Lilayuthalert, W ;
Sirivat, A ;
Schwank, JW .
COMPOSITES SCIENCE AND TECHNOLOGY, 2001, 61 (09) :1253-1264