Electrospun Polyimide Nanocomposite Fibers Reinforced with Core-Shell Fe-FeO Nanoparticles

被引:125
作者
Zhu, Jiahua [1 ]
Wei, Suying [2 ]
Chen, Xuelong [1 ]
Karki, Amar B. [3 ]
Rutman, Dan [1 ]
Young, David P. [3 ]
Guo, Zhanhu [1 ]
机构
[1] Lamar Univ, Dan F Smith Dept Chem Engn, ICL, Beaumont, TX 77710 USA
[2] Lamar Univ, Dept Chem & Phys, Beaumont, TX 77710 USA
[3] Louisiana State Univ, Dept Phys & Astron, Baton Rouge, LA 70803 USA
关键词
IRON-OXIDE; POLYMER; FABRICATION; NANOFIBERS; MEMBRANES; RELAXATION; PROPERTY; DIAMETER; BEHAVIOR;
D O I
10.1021/jp1020033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Both pure polyimide (PI) and Fe-FeO nanoparticles reinforced PI nanocomposite fibers with a particle loading of 5, 10, 20, and 30 wt % are produced by electrospinning with optimized operational parameters such as polymer concentration, applied electrical voltage, and tip-to-collector distance. The morphology of the resulting products is correlated to the corresponding rheological behaviors of the pure PI and Fe-FeO/PI nanocomposite solutions. Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) reveal an enhanced thermal stability of the nanocomposite fibers after introducing the Fe-FeO nanoparticles. The glass transition temperature (T-g) and melting temperature (T-m) of the nanocomposite fibers increase by 10-12 and 15-17 degrees C, respectively, as compared to those of the pure PI fibers. The magnetic properties of the Fe-FeO nanoparticles in the polymer nanocomposite fibers are different from those of the as-received nanoparticles. An increased shell thickness by 7.4% is deduced after the nanoparticles experiencing the high-voltage electrospinning.
引用
收藏
页码:8844 / 8850
页数:7
相关论文
共 55 条
  • [1] [Anonymous], J APPL PHYS
  • [2] ELECTROSTATIC SPINNING OF ACRYLIC MICROFIBERS
    BAUMGARTEN, PK
    [J]. JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1971, 36 (01) : 71 - +
  • [3] Effect of electrospinning parameters on the nanofiber diameter and length
    Beachley, Vince
    Wen, Xuejun
    [J]. MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2009, 29 (03): : 663 - 668
  • [4] Flexible nanotube electronics
    Bradley, K
    Gabriel, JCP
    Grüner, G
    [J]. NANO LETTERS, 2003, 3 (10) : 1353 - 1355
  • [5] Synthesis and properties of an aluminum nitride polyimide nanocomposite prepared by a nonaqueous suspension process
    Chen, XH
    Gonsalves, KE
    [J]. JOURNAL OF MATERIALS RESEARCH, 1997, 12 (05) : 1274 - 1286
  • [6] Cullity B.D., 2009, INTRO MAGNETIC MAT, V2009, P531
  • [7] Daan W., 2004, ANGEW CHEM INT EDIT, V43, P2480
  • [8] Study on structure and orientation action of polyurethane nanocomposites
    Dai, XH
    Xu, J
    Guo, XL
    Lu, YL
    Shen, DY
    Zhao, N
    Luo, XD
    Zhang, XL
    [J]. MACROMOLECULES, 2004, 37 (15) : 5615 - 5623
  • [9] Controlled deposition of electrospun poly(ethylene oxide) fibers
    Deitzel, JM
    Kleinmeyer, JD
    Hirvonen, JK
    Tan, NCB
    [J]. POLYMER, 2001, 42 (19) : 8163 - 8170
  • [10] The synthesis and dielectric study of BaTiO3/polyimide nanocomposite films
    Devaraju, NG
    Kim, ES
    Lee, BI
    [J]. MICROELECTRONIC ENGINEERING, 2005, 82 (01) : 71 - 83