Supercritical CO2-Assisted SiOx/Carbon Multi-Layer Coating on Si Anode for Lithium-Ion Batteries

被引:102
作者
Hernandha, Rahmandhika Firdauzha Hary [1 ]
Rath, Purna Chandra [1 ]
Umesh, Bharath [2 ]
Patra, Jagabandhu [1 ,3 ]
Huang, Chih-Yang [1 ]
Wu, Wen-Wei [1 ]
Dong, Quan-Feng [4 ]
Li, Ju [5 ,6 ]
Chang, Jeng-Kuei [1 ,2 ,3 ]
机构
[1] Natl Yang Ming Chiao Tung Univ, Dept Mat Sci & Engn, 1001 Univ Rd, Hsinchu 30010, Taiwan
[2] Natl Cent Univ, Inst Mat Sci & Engn, 300 Jhong Da Rd, Taoyuan 32001, Taiwan
[3] Natl Cheng Kung Univ, Hierarch Green Energy Mat HiGEM Res Ctr, 1 Univ Rd, Tainan 70101, Taiwan
[4] Xiamen Univ, Dept Chem, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[5] MIT, Dept Nucl Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[6] MIT, Dept Mat Sci & Engn, 77 Massachusetts Ave, Cambridge, MA 02139 USA
关键词
carbon precursors; green process; high-performance anodes; multi-layer coating; supercritical fluids; HIGH-CAPACITY; LOW-COST; PERFORMANCE; SILICON; FLUID; NANOCOMPOSITE; DEPOSITION; FILMS; CO2; NANOPARTICLES;
D O I
10.1002/adfm.202104135
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Supercritical CO2 (SCCO2), characterized by gas-like diffusivity, low surface tension, and excellent mass transfer properties, is applied to create a SiOx/carbon multi-layer coating on Si particles. Interaction of SCCO2 with Si produces a continuous SiOx layer, which can buffer Si volume change during lithiation/delithiation. In addition, a conformal carbon film is deposited around the Si@SiOx core. Compared to the carbon film produced via a conventional wet-chemical method, the SCCO2-deposited carbon has significantly fewer oxygen-containing functional groups and thus higher electronic conductivity. Three types of carbon precursors, namely, glucose, sucrose, and citric acid, in the SCCO2 syntheses are compared. An eco-friendly, cost-effective, and scalable SCCO2 process is thus developed for the single-step production of a unique Si@SiOx@C anode for Li-ion batteries. The sample prepared using the glucose precursor shows the highest tap density, the lowest charge transfer resistance, and the best Li+ transport kinetics among the electrodes, resulting in a high specific capacity of 918 mAh g(-1) at 5 A g(-1). After 300 charge-discharge cycles, the electrode retains its integrity and the accumulation of the solid electrolyte interphase is low. The great potential of the proposed SCCO2 synthesis and composite anode for Li-ion battery applications is demonstrated.
引用
收藏
页数:11
相关论文
共 59 条
[21]   A Highly Cross-Linked Polymeric Binder for High-Performance Silicon Negative Electrodes in Lithium Ion Batteries [J].
Koo, Bonjae ;
Kim, Hyunjung ;
Cho, Younghyun ;
Lee, Kyu Tae ;
Choi, Nam-Soon ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2012, 51 (35) :8762-8767
[22]   The emerging era of supramolecular polymeric binders in silicon anodes [J].
Kwon, Tae-woo ;
Choi, Jang Wook ;
Coskun, Ali .
CHEMICAL SOCIETY REVIEWS, 2018, 47 (06) :2145-2164
[23]   Improved supercapacitor performance of MnO2-graphene composites constructed using a supercritical fluid and wrapped with an ionic liquid [J].
Lee, Ming-Tsung ;
Fan, Chen-Yen ;
Wang, Yi-Chen ;
Li, Hui-Ying ;
Chang, Jeng-Kuei ;
Tseng, Chuan-Ming .
JOURNAL OF MATERIALS CHEMISTRY A, 2013, 1 (10) :3395-3405
[24]   Supercritical Carbon Dioxide-Assisted Process for Well-Dispersed Silicon/Graphene Composite as a Li ion Battery Anode [J].
Lee, Sang Ha ;
Park, Sengyoen ;
Kim, Min ;
Yoon, Dohyeon ;
Chanthad, Chalathorn ;
Cho, Misuk ;
Kim, Jaehoon ;
Park, Jong Hyeok ;
Lee, Youngkwan .
SCIENTIFIC REPORTS, 2016, 6
[25]   Eco-Efficient Synthesis of Highly Porous CoCO3 Anodes from Supercritical CO2 for Li+ and Na+ Storage [J].
Li, Hui-Ying ;
Tseng, Chuan-Ming ;
Yang, Cheng-Hsien ;
Lee, Tai-Chou ;
Su, Ching-Yuan ;
Hsieh, Chien-Te ;
Chang, Jeng-Kuei .
CHEMSUSCHEM, 2017, 10 (11) :2464-2472
[26]   Pomegranate-Like Structured Si@SiOxComposites With High-Capacity for Lithium-Ion Batteries [J].
Li, Jianbin ;
Liu, Wenjing ;
Qiao, Yingjun ;
Peng, Gongchang ;
Ren, Yurong ;
Xie, Zhengwei ;
Qu, Meizhen .
FRONTIERS IN CHEMISTRY, 2020, 8
[27]   A Chronicle Review of Nonsilicon (Sn, Sb, Ge)-Based Lithium/Sodium-Ion Battery Alloying Anodes [J].
Liang, Suzhe ;
Cheng, Ya-Jun ;
Zhu, Jin ;
Xia, Yonggao ;
Mueller-Buschbaum, Peter .
SMALL METHODS, 2020, 4 (08)
[28]  
Liu N, 2014, NAT NANOTECHNOL, V9, P187, DOI [10.1038/nnano.2014.6, 10.1038/NNANO.2014.6]
[29]   Silicon oxides: a promising family of anode materials for lithium-ion batteries [J].
Liu, Zhenhui ;
Yu, Qiang ;
Zhao, Yunlong ;
He, Ruhan ;
Xu, Ming ;
Feng, Shihao ;
Li, Shidong ;
Zhou, Liang ;
Mai, Liqiang .
CHEMICAL SOCIETY REVIEWS, 2019, 48 (01) :285-309
[30]   Studying Electrical Conductivity Using a 3D Printed Four-Point Probe Station [J].
Lu, Yang ;
Santino, Luciano M. ;
Acharya, Shinjita ;
Anandarajah, Had ;
D'Arcy, Julio M. .
JOURNAL OF CHEMICAL EDUCATION, 2017, 94 (07) :950-955