Remarks on endpoint Strichartz estimates for Schrodinger equations with the critical inverse-square potential

被引:17
|
作者
Mizutani, Haruya [1 ]
机构
[1] Osaka Univ, Grad Sch Sci, Dept Math, Toyonaka, Osaka 5600043, Japan
关键词
Strichartz estimates; Schrodinger equation; Inverse-square potential; MAGNETIC POTENTIALS; WAVE-EQUATION; TIME DECAY; CUBIC NLS; OPERATORS; INEQUALITIES;
D O I
10.1016/j.jde.2017.05.006
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The purpose of this paper is to study the validity of global-in-time Strichartz estimates for the Schrodinger equation on R-n, n >= 3, with the negative inverse-square potential -sigma vertical bar x vertical bar(-2) in the critical case sigma = (n - 2)(2)/4. It turns out that the situation is different from the subcritical case sigma < (n-2)(2)/4 in which the full range of Strichartz estimates is known to be hold. More precisely, splitting the solution into the radial and non-radial parts, we show that (i) the radial part satisfies a weak-type endpoint estimate, which can be regarded as an extension to higher dimensions of the endpoint Strichartz estimate with radial data for the two-dimensional free Schrodinger equation; (ii) other endpoint estimates in Lorentz spaces for the radial part fail in general; (iii) the non-radial part satisfies the full range of Strichartz estimates. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:3832 / 3853
页数:22
相关论文
共 50 条
  • [21] BV Capacity for the Schrodinger Operator with an Inverse-Square Potential
    Han, Yang
    Liu, Yu
    Wang, Haihui
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (05) : 2765 - 2785
  • [22] Global endpoint Strichartz estimates for Schrodinger equations on the cylinder R x T
    Barron, Alexander
    Christ, Michael
    Pausader, Benoit
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2021, 206
  • [23] KOLMOGOROV EQUATIONS PERTURBED BY AN INVERSE-SQUARE POTENTIAL
    Goldstein, Gisele Ruiz
    Goldstein, Jerome A.
    Rhandi, Abdelaziz
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2011, 4 (03): : 623 - 630
  • [24] Solutions of Schrodinger equations with inverse square potential and critical nonlinearity
    Deng, Yinbin
    Jin, Lingyu
    Peng, Shuangjie
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (05) : 1376 - 1398
  • [25] Strichartz Estimates for Schrodinger Equations on Scattering Manifolds
    Mizutani, Haruya
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (02) : 169 - 224
  • [26] STRICHARTZ ESTIMATES FOR SCHRODINGER EQUATIONS WITH VARIABLE COEFFICIENTS AND UNBOUNDED POTENTIALS
    Mizutani, Haruya
    ANALYSIS & PDE, 2013, 6 (08): : 1857 - 1898
  • [27] Sobolev spaces adapted to the Schrodinger operator with inverse-square potential
    Killip, R.
    Miao, C.
    Visan, M.
    Zhang, J.
    Zheng, J.
    MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) : 1273 - 1298
  • [28] THE ENERGY-CRITICAL NLS WITH INVERSE-SQUARE POTENTIAL
    Killip, Rowan
    Miao, Changxing
    Visan, Monica
    Zhang, Junyong
    Zheng, Jiqiang
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (07) : 3831 - 3866
  • [29] Schauder estimates of the uniformly elliptic equation with a inverse-square potential
    Li, Zijin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 464 (02) : 1352 - 1365
  • [30] Dispersive estimate for the wave equation with the inverse-square potential
    Planchon, F
    Stalker, JG
    Tahvildar-Zadeh, AS
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2003, 9 (06) : 1387 - 1400