Shifts in Nitrobacter- and Nitrospira-like nitrite-oxidizing bacterial communities under long-term fertilization practices

被引:74
作者
Han, Shun [1 ]
Zeng, Luyang [1 ,2 ]
Luo, Xuesong [1 ,2 ]
Xiong, Xiang [1 ,2 ]
Wen, Shilin [3 ]
Wang, Boren [3 ]
Chen, Wenli [1 ]
Huang, Qiaoyun [1 ,2 ]
机构
[1] Huazhong Agr Univ, State Key Lab Agr Microbiol, Wuhan 430070, Hubei, Peoples R China
[2] Huazhong Agr Univ, Coll Resources & Environm, Minist Agr, Key Lab Arable Land Conservat Middle & Lower Reac, Wuhan 430070, Hubei, Peoples R China
[3] Chinese Acad Agr Sci, Hengyang Red Soil Expt Stn, Hengyang 421001, Peoples R China
关键词
Fertilization treatment; Nitrite-oxidizing bacteria (NOB); Nitrospira-like NOB; Nitrobacter-like NOB; Potential nitrite oxidation activity (PNO); COMPLETE NITRIFICATION; MICROBIAL DIVERSITY; AMMONIA OXIDIZERS; ARCHAEA; ACID; MICROORGANISMS; INHIBITION; MANAGEMENT; PHYSIOLOGY; PATTERNS;
D O I
10.1016/j.soilbio.2018.05.033
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
Nitrite-oxidizing bacteria (NOB) are key players in the second step of nitrification, which is an important process in the soil nitrogen (N) cycle. However, the ecology of nitrite oxidizers and their response to disturbances such as long-term fertilization practices are scarcely known in agricultural ecosystems. We used samples from a Red soil subject to a long-term chemical and organic fertilization experiment, including control without fertilizer (CK), swine manure (M), chemical fertilization (NPK), and chemical/manure combined fertilization (MNPK) treatment, to explore how agricultural practices impact the community structure, abundance, and potential activity of nitrite oxidizers (PNO). The abundance of Nitrobacter was significantly increased in the M and MNPK plots, whereas the abundance of Nitrospira was significantly reduced in the M and NPK treatment plots and less inhibited in the MNPK treatment. The PNO showed a similar trend to that for Nitrobacter abundance. The diversity of Nitrobacter increased in the M-treated plots, while that of Nitrospira increased in the M and MNPK plots and decreased in the NPK plots. Non-metric multidimensional scaling (NMDS) revealed that the Nitrobacter- and Nitrospira-like NOB community was shift in these four fertilization treatments. Redundancy analysis showed that pH + SOC (soil organic carbon) and pH + TN (total nitrogen) significantly explained the variation in the composition of Nitrobacter and Nitrospira, respectively. In addition, the Nitrospira/Nitrobacter abundance ratio and community structure of Nitrobacter- and Nitrospira-like NOB are responsible for the changes of soil PNO. Collectively, these data suggest that the nitrite-oxidation process in the red soil is possibly controlled by both Nitrospira and Nitrobacter-like NOB, which were shaped by pH + TN and pH + SOC, respectively.
引用
收藏
页码:118 / 125
页数:8
相关论文
共 48 条
[1]   Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic [J].
Alawi, Mashal ;
Lipski, Andre ;
Sanders, Tina ;
Eva-Maria-Pfeiffer ;
Spieck, Eva .
ISME JOURNAL, 2007, 1 (03) :256-264
[2]   Shifts between Nitrospira- and Nitrobacter-like nitrite oxidizers underlie the response of soil potential nitrite oxidation to changes in tillage practices [J].
Attard, E. ;
Poly, F. ;
Commeaux, C. ;
Laurent, F. ;
Terada, A. ;
Smets, B. F. ;
Recous, S. ;
Le Roux, X. .
ENVIRONMENTAL MICROBIOLOGY, 2010, 12 (02) :315-326
[3]   Agricultural land usage transforms nitrifier population ecology [J].
Bertagnolli, Anthony D. ;
McCalmont, Dylan ;
Meinhardt, Kelley A. ;
Fransen, Steven C. ;
Strand, Stuart ;
Brown, Sally ;
Stahl, David A. .
ENVIRONMENTAL MICROBIOLOGY, 2016, 18 (06) :1918-1929
[4]   Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter [J].
Blackburne, Richard ;
Vadivelu, Vel M. ;
Yuan, Zhiquo ;
Keller, Jurg .
WATER RESEARCH, 2007, 41 (14) :3033-3042
[5]  
Bokulich NA, 2013, NAT METHODS, V10, P57, DOI [10.1038/NMETH.2276, 10.1038/nmeth.2276]
[6]   QIIME allows analysis of high-throughput community sequencing data [J].
Caporaso, J. Gregory ;
Kuczynski, Justin ;
Stombaugh, Jesse ;
Bittinger, Kyle ;
Bushman, Frederic D. ;
Costello, Elizabeth K. ;
Fierer, Noah ;
Pena, Antonio Gonzalez ;
Goodrich, Julia K. ;
Gordon, Jeffrey I. ;
Huttley, Gavin A. ;
Kelley, Scott T. ;
Knights, Dan ;
Koenig, Jeremy E. ;
Ley, Ruth E. ;
Lozupone, Catherine A. ;
McDonald, Daniel ;
Muegge, Brian D. ;
Pirrung, Meg ;
Reeder, Jens ;
Sevinsky, Joel R. ;
Tumbaugh, Peter J. ;
Walters, William A. ;
Widmann, Jeremy ;
Yatsunenko, Tanya ;
Zaneveld, Jesse ;
Knight, Rob .
NATURE METHODS, 2010, 7 (05) :335-336
[7]   Ammonia-oxidizing archaea: important players in paddy rhizosphere soil? [J].
Chen, Xue-Ping ;
Zhu, Yong-Guan ;
Xia, Yue ;
Shen, Ju-Pei ;
He, Ji-Zheng .
ENVIRONMENTAL MICROBIOLOGY, 2008, 10 (08) :1978-1987
[8]   Community structure of ammonia-oxidizing bacteria under long-term application of mineral fertilizer and organic manure in a sandy loam soil [J].
Chu, Haiyan ;
Fujii, Takeshi ;
Morimoto, Sho ;
Lin, Xiangui ;
Yagi, Kazuyuki ;
Hu, Junli ;
Zhang, Jiabao .
APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2007, 73 (02) :485-491
[9]   Complete nitrification by Nitrospira bacteria [J].
Daims, Holger ;
Lebedeva, Elena V. ;
Pjevac, Petra ;
Han, Ping ;
Herbold, Craig ;
Albertsen, Mads ;
Jehmlich, Nico ;
Palatinszky, Marton ;
Vierheilig, Julia ;
Bulaev, Alexandr ;
Kirkegaard, Rasmus H. ;
von Bergen, Martin ;
Rattei, Thomas ;
Bendinger, Bernd ;
Nielsen, Per H. ;
Wagner, Michael .
NATURE, 2015, 528 (7583) :504-+
[10]   Nitrification in acid soils: micro-organisms and mechanisms [J].
De Boer, W ;
Kowalchuk, GA .
SOIL BIOLOGY & BIOCHEMISTRY, 2001, 33 (7-8) :853-866