Progress in Light Emission from Silicon and Germanium Nanostructures

被引:1
作者
Lockwood, David J. [1 ]
机构
[1] Natl Res Council Canada, Measurement Sci & Stand, Ottawa, ON K1A 0R6, Canada
来源
NANOSCALE LUMINESCENT MATERIALS 5 | 2018年 / 85卷 / 03期
关键词
MOLECULAR-BEAM EPITAXY; OPTICAL-PROPERTIES; SI/SI1-XGEX NANOSTRUCTURES; DIRECT BANDGAP; QUANTUM DOTS; REDUCED-SIZE; GE DOTS; PHOTOLUMINESCENCE; NANOCRYSTALS; LUMINESCENCE;
D O I
10.1149/08503.0023ecst
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Light emission from silicon and germanium nanostructures has been of great interest for some time now owing to the need for silicon-based light sources for applications in silicon optoelectronics and photonics. Both silicon and germanium possess indirect band gaps, which makes them very inefficient light emitters. Band gap engineering employing quantum wells, wires, or dots has been proposed as one way to overcome this limitation and, in the past, Si/Ge, Si/SiO2, or Si/SiGe-alloy thin-multilayer nanostructures grown on Si have been produced on this principle, and although light emission with greatly improved efficiency has been obtained at low temperatures the emission at room temperature is still very weak, because of exciton dissociation. Recent advances in band gap engineering technology have resulted in the development of new systems incorporating one-, two-, and three-dimensionally confined Si-Ge nanostructures that produce bright light in the near infrared. Here, the novel optical properties of recently-investigated various such nanostructures are reviewed.
引用
收藏
页码:23 / 39
页数:17
相关论文
共 52 条
[1]   Reduced graphene oxide-germanium quantum dot nanocomposite: electronic, optical and magnetic properties [J].
Amollo, Tabitha A. ;
Mola, Genene T. ;
Nyamori, Vincent O. .
NANOTECHNOLOGY, 2017, 28 (49)
[2]   Growth and self-organization of SiGe nanostructures [J].
Aqua, J. -N. ;
Berbezier, I. ;
Favre, L. ;
Frisch, T. ;
Ronda, A. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2013, 522 (02) :59-189
[3]   Quantum confinement in Si and Ge nanostructures: Theory and experiment [J].
Barbagiovanni, Eric G. ;
Lockwood, David J. ;
Simpson, Peter J. ;
Goncharova, Lyudmila V. .
APPLIED PHYSICS REVIEWS, 2014, 1 (01)
[4]   Ge dots and nanostructures grown epitaxially on Si [J].
Baribeau, JM ;
Wu, X ;
Rowell, NL ;
Lockwood, DJ .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2006, 18 (08) :R139-R174
[5]   Selective growth and ordering of SiGe nanowires for band gap engineering [J].
Benkouider, A. ;
Ronda, A. ;
Gouye, A. ;
Herrier, C. ;
Favre, L. ;
Lockwood, D. J. ;
Rowell, N. L. ;
Delobbe, A. ;
Sudraud, P. ;
Berbezier, I. .
NANOTECHNOLOGY, 2014, 25 (33)
[6]   Site-controlled and advanced epitaxial Ge/Si quantum dots: fabrication, properties, and applications [J].
Brehm, Moritz ;
Grydlik, Martyna .
NANOTECHNOLOGY, 2017, 28 (39)
[7]   Silicon nanostructures for third generation photovoltaic solar cells [J].
Conibeer, Gavin ;
Green, Martin ;
Corkish, Richard ;
Cho, Young ;
Cho, Eun-Chel ;
Jiang, Chu-Wei ;
Fangsuwannarak, Thipwan ;
Pink, Edwin ;
Huang, Yidan ;
Puzzer, Tom ;
Trupke, Thorsten ;
Richards, Bryce ;
Shalav, Avi ;
Lin, Kuo-lung .
THIN SOLID FILMS, 2006, 511 :654-662
[8]   Genetic-Algorithm Discovery of a Direct-Gap and Optically Allowed Superstructure from Indirect-Gap Si and Ge Semiconductors [J].
d'Avezac, Mayeul ;
Luo, Jun-Wei ;
Chanier, Thomas ;
Zunger, Alex .
PHYSICAL REVIEW LETTERS, 2012, 108 (02)
[9]   THE OPTICAL-PROPERTIES OF LUMINESCENCE-CENTERS IN SILICON [J].
DAVIES, G .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1989, 176 (3-4) :83-188
[10]  
de Boer WDAM, 2010, NAT NANOTECHNOL, V5, P878, DOI [10.1038/nnano.2010.236, 10.1038/NNANO.2010.236]