Accuracy of ultrawide-field fundus ophthalmoscopy-assisted deep learning for detecting treatment-naive proliferative diabetic retinopathy

被引:53
作者
Nagasawa, Toshihiko [1 ]
Tabuchi, Hitoshi [1 ]
Masumoto, Hiroki [1 ]
Enno, Hiroki [2 ]
Niki, Masanori [3 ]
Ohara, Zaigen [1 ]
Yoshizumi, Yuki [1 ]
Ohsugi, Hideharu [1 ]
Mitamura, Yoshinori [3 ]
机构
[1] Saneikai Tsukazaki Hosp, Dept Ophthalmol, 68-1 Aboshi Waku, Himeji, Hyogo 6711227, Japan
[2] Rist Inc, Tokyo, Japan
[3] Tokushima Univ, Grad Sch, Inst Biomed Sci, Dept Ophthalmol, Tokushima, Japan
关键词
Ultrawide-field fundus ophthalmoscopy; Proliferative diabetic retinopathy; Deep learning; Deep convolutional neural network; PERIPHERAL LESIONS; PREVALENCE; VALIDATION; IMAGES;
D O I
10.1007/s10792-019-01074-z
中图分类号
R77 [眼科学];
学科分类号
100212 ;
摘要
PurposeWe investigated using ultrawide-field fundus images with a deep convolutional neural network (DCNN), which is a machine learning technology, to detect treatment-naive proliferative diabetic retinopathy (PDR).MethodsWe conducted training with the DCNN using 378 photographic images (132 PDR and 246 non-PDR) and constructed a deep learning model. The area under the curve (AUC), sensitivity, and specificity were examined.ResultThe constructed deep learning model demonstrated a high sensitivity of 94.7% and a high specificity of 97.2%, with an AUC of 0.969.ConclusionOur findings suggested that PDR could be diagnosed using wide-angle camera images and deep learning.
引用
收藏
页码:2153 / 2159
页数:7
相关论文
共 33 条
  • [1] Improved Automated Detection of Diabetic Retinopathy on a Publicly Available Dataset Through Integration of Deep Learning
    Abramoff, Michael David
    Lou, Yiyue
    Erginay, Ali
    Clarida, Warren
    Amelon, Ryan
    Folk, James C.
    Niemeijer, Meindert
    [J]. INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2016, 57 (13) : 5200 - 5206
  • [2] Agrawal P, 2014, LECT NOTES COMPUT SC, V8695, P329, DOI 10.1007/978-3-319-10584-0_22
  • [3] Understanding diagnostic tests 3: receiver operating characteristic curves
    Akobeng, Anthony K.
    [J]. ACTA PAEDIATRICA, 2007, 96 (05) : 644 - 647
  • [4] [Anonymous], 1991, Ophthalmology, V98, P786
  • [5] [Anonymous], ARXIV161002391V3
  • [6] Detecting Preperimetric Glaucoma with Standard Automated Perimetry Using a Deep Learning Classifier
    Asaoka, Ryo
    Murata, Hiroshi
    Iwase, Aiko
    Araie, Makoto
    [J]. OPHTHALMOLOGY, 2016, 123 (09) : 1974 - 1980
  • [7] Deng J, 2009, PROC CVPR IEEE, P248, DOI 10.1109/CVPRW.2009.5206848
  • [8] Early Treatment Diabetic Retinopathy Study Res Grp, 1991, OPHTHALMOLOGY, V98, P766
  • [9] Automatic segmentation of nine retinal layer boundaries in OCT images of non-exudative AMD patients using deep learning and graph search
    Fang, Leyuan
    Cunefare, David
    Wang, Chong
    Guymer, Robyn H.
    Li, Shutao
    Farsiu, Sina
    [J]. BIOMEDICAL OPTICS EXPRESS, 2017, 8 (05): : 2732 - 2744
  • [10] Automated Identification of Diabetic Retinopathy Using Deep Learning
    Gargeya, Rishab
    Leng, Theodore
    [J]. OPHTHALMOLOGY, 2017, 124 (07) : 962 - 969