A new and efficient algorithm to look for periodic patterns on spatio-temporal databases

被引:3
|
作者
Gutierrez-Soto, Claudio [1 ]
Gutierrez-Bunster, Tatiana [1 ]
Fuentes, Guillermo [1 ]
机构
[1] Univ Bio Bio, Dept Sistemas Informac, Ave Collao, Concepcion, Chile
关键词
Pattern searching; Association rule algorithms; spatio-temporal databases; THINGS APPLICATIONS; INTERNET;
D O I
10.3233/JIFS-219245
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Big Data is a generic term that involves the storing and processing of a large amount of data. This large amount of data has been promoted by technologies such as mobile applications, Internet of Things (IoT), and Geographic Information Systems (GIS). An example of GIS is a Spatio-Temporal Database (STDB). A complex problem to address in terms of processing time is pattern searching on STDB. Nowadays, high information processing capacity is available everywhere. Nevertheless, the pattern searching problem on STDB using traditional Data Mining techniques is complex because the data incorporate the temporal aspect. Traditional techniques of pattern searching, such as time series, do not incorporate the spatial aspect. For this reason, traditional algorithms based on association rules must be adapted to find these patterns. Most of the algorithms take exponential processing times. In this paper, a new efficient algorithm (named Minus-F1) to look for periodic patterns on STDB is presented. Our algorithm is compared with Apriori, Max-Subpattern, and PPA algorithms on synthetic and real STDB. Additionally, the computational complexities for each algorithm in the worst cases are presented. Empirical results show that Minus-F1 is not only more efficient than Apriori, Max-Subpattern, and PAA, but also it presents a polynomial behavior.
引用
收藏
页码:4563 / 4572
页数:10
相关论文
共 24 条
  • [1] Efficient querying and animation of periodic spatio-temporal databases
    Revesz, P
    Cai, MC
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2002, 36 (04) : 437 - 457
  • [2] Efficient Querying and Animation of Periodic Spatio-Temporal Databases
    Peter Revesz
    Mengchu Cai
    Annals of Mathematics and Artificial Intelligence, 2002, 36 : 437 - 457
  • [3] An Efficient Probabilistic Algorithm to Detect Periodic Patterns in Spatio-Temporal Datasets
    Gutierrez-Soto, Claudio
    Galdames, Patricio
    Palomino, Marco A.
    BIG DATA AND COGNITIVE COMPUTING, 2024, 8 (06)
  • [4] Survey of spatio-temporal databases
    Abraham T.
    Roddick J.F.
    GeoInformatica, 1999, 3 (1) : 61 - 99
  • [5] Applying Spatio-temporal Databases to Interaction Agents
    Cuadra, Dolores
    Javier Calle, Francisco
    Rivero, Jessica
    del Valle, David
    INTERNATIONAL SYMPOSIUM ON DISTRIBUTED COMPUTING AND ARTIFICIAL INTELLIGENCE 2008, 2009, 50 : 536 - 540
  • [6] Supporting Situation Awareness in Spatio-Temporal Databases
    Andreas Behrend
    Philip Schmiegelt
    Andreas Dohr
    Datenbank-Spektrum, 2016, 16 (3) : 207 - 218
  • [7] Metaphors for visual querying of spatio-temporal databases
    Bonhomme, C
    Aufaure, MA
    Trépied, C
    ADVANCES IN VISUAL INFORMATION SYSTEMS, PROCEEDINGS, 2000, 1929 : 140 - 153
  • [8] Closest pair queries in spatio-temporal databases
    Chung, CW
    Choi, S
    Choi, Y
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2005, 20 (02): : 107 - 115
  • [9] Mining Evolving Spatial Co-location Patterns from Spatio-temporal Databases
    Ma, Yunqiang
    Lu, Junli
    Yang, Dazhi
    2022 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (IEEE BIGCOMP 2022), 2022, : 129 - 136
  • [10] On repairing and querying inconsistent probabilistic spatio-temporal databases
    Parisi, Francesco
    Grant, John
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2017, 84 : 41 - 74